Graphene Oxide‐Assisted Multiple Cross‐Linking of MXene for Large‐Area, High‐Strength, Oxidation‐Resistant, and Multifunctional Films

[1]  R. A. Soomro,et al.  Flexible Carbon Dots‐Intercalated MXene Film Electrode with Outstanding Volumetric Performance for Supercapacitors , 2022, Advanced Functional Materials.

[2]  Jiurong Liu,et al.  Ultrathin Cellulose Nanofiber Assisted Ambient‐Pressure‐Dried, Ultralight, Mechanically Robust, Multifunctional MXene Aerogels , 2022, Advanced materials.

[3]  Jiurong Liu,et al.  Bicontinuous, High-Strength, and Multifunctional Chemical-Cross-Linked MXene/Superaligned Carbon Nanotube Film. , 2022, ACS nano.

[4]  Y. Gogotsi,et al.  Overcoming the Limitations of MXene Electrodes for Solution‐Processed Optoelectronic Devices , 2022, Advanced materials.

[5]  Yuehua Wu,et al.  Ultrabroad Microwave Absorption Ability and Infrared Stealth Property of Nano-Micro CuS@rGO Lightweight Aerogels , 2022, Nano-Micro Letters.

[6]  Qijun Sun,et al.  Integrated Self‐Powered Sensors Based on 2D Material Devices , 2022, Advanced Functional Materials.

[7]  Jiaxin Pan,et al.  Lotus leaf-inspired and multifunctional Janus carbon felt@Ag composites enabled by in situ asymmetric modification for electromagnetic protection and low-voltage joule heating , 2022, Composites Part B: Engineering.

[8]  Junbai Li,et al.  Flexible Recyclable Cellulose Paper Templated Cu-Doped Polydopamine Membranes with Dual Enzyme-Like Activity. , 2022, Small.

[9]  X. Guan,et al.  2D MXene Nanomaterials: Synthesis, Mechanism, and Multifunctional Applications in Microwave Absorption , 2022, Small Structures.

[10]  Pietro Cataldi,et al.  Electrically Conductive 2D Material Coatings for Flexible and Stretchable Electronics: A Comparative Review of Graphenes and MXenes , 2022, Advanced Functional Materials.

[11]  Shaolong Tang,et al.  The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature , 2022, Nano Research.

[12]  Yuan Cheng,et al.  Anisotropically Oriented Carbon Films with Dual‐Function of Efficient Heat Dissipation and Excellent Electromagnetic Interference Shielding Performances , 2022, Advanced Functional Materials.

[13]  Z. Su,et al.  Sustainable-Macromolecule-Assisted Preparation of Cross-linked, Ultralight, Flexible Graphene Aerogel Sensors toward Low-Frequency Strain/Pressure to High-Frequency Vibration Sensing. , 2022, Small.

[14]  Hao‐Bin Zhang,et al.  Super-Tough and Environmentally Stable Aramid. Nanofiber@MXene Coaxial Fibers with Outstanding Electromagnetic Interference Shielding Efficiency , 2022, Nano-Micro Letters.

[15]  Shanyu Zhao,et al.  Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding , 2022, Nano-Micro Letters.

[16]  Junwei Gu,et al.  Multifunctional Wearable Silver Nanowire Decorated Leather Nanocomposites for Joule Heating, Electromagnetic Interference Shielding and Piezoresistive Sensing. , 2022, Angewandte Chemie.

[17]  Wei Liu,et al.  Metal sulfides based composites as promising efficient microwave absorption materials: A review , 2022, Journal of Materials Science & Technology.

[18]  R. Zenobi,et al.  Ultrafine Cellulose Nanofiber‐Assisted Physical and Chemical Cross‐Linking of MXene Sheets for Electromagnetic Interference Shielding , 2021, Small methods.

[19]  Canhui Lu,et al.  Facile Fabrication of Densely Packed Ti3C2 MXene/Nanocellulose Composite Films for Enhancing Electromagnetic Interference Shielding and Electro-/Photothermal Performance. , 2021, ACS nano.

[20]  Zikang Tang,et al.  Ultrathin, Lightweight, and Flexible CNT Buckypaper Enhanced Using MXenes for Electromagnetic Interference Shielding , 2021, Nano-Micro Letters.

[21]  J. Dai,et al.  Developing fibrillated cellulose as a sustainable technological material , 2021, Nature.

[22]  Guofu Zhou,et al.  Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a High-Efficiency Lithium Polysulfide Conversion Process. , 2021, Angewandte Chemie.

[23]  Xingyi Huang,et al.  A high performance wearable strain sensor with advanced thermal management for motion monitoring , 2020, Nature Communications.

[24]  C. Zhang,et al.  Nanocellulose‐MXene Biomimetic Aerogels with Orientation‐Tunable Electromagnetic Interference Shielding Performance , 2020, Advanced science.

[25]  Luo Kong,et al.  Graphene and MXene Nanomaterials: Toward High‐Performance Electromagnetic Wave Absorption in Gigahertz Band Range , 2020, Advanced Functional Materials.

[26]  Wei Chen,et al.  Flexible, Transparent and Conductive Ti3C2Tx MXene-Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding. , 2020, ACS nano.

[27]  S. Fang,et al.  Super-tough MXene-functionalized graphene sheets , 2020, Nature Communications.

[28]  C. Koo,et al.  2D MXenes for Electromagnetic Shielding: A Review , 2020, Advanced Functional Materials.

[29]  Xungai Wang,et al.  Scalable Manufacturing of Free‐Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity , 2020, Advanced materials.

[30]  Kevin J. De France,et al.  Functional Materials from Nanocellulose: Utilizing Structure–Property Relationships in Bottom‐Up Fabrication , 2020, Advanced materials.

[31]  Congju Li,et al.  Flexible and Ultrathin Waterproof Cellular Membranes Based on High‐Conjunction Metal‐Wrapped Polymer Nanofibers for Electromagnetic Interference Shielding , 2020, Advanced materials.

[32]  Tingting Wu,et al.  Ultralight, Flexible and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. , 2020, ACS nano.

[33]  Gang San Lee,et al.  Electromagnetic Shielding of Monolayer MXene Assemblies , 2020, Advanced materials.

[34]  Majid Beidaghi,et al.  Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose , 2019, Advanced materials.

[35]  Xu Zhao,et al.  Carbonaceous biomass-titania composites with Ti O C bonding bridge for efficient photocatalytic reduction of Cr(VI) under narrow visible light , 2019, Chemical Engineering Journal.

[36]  Lai-fei Cheng,et al.  Lightweight Ti2CT x MXene/Poly(vinyl alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature. , 2019, ACS applied materials & interfaces.

[37]  Rui Yang,et al.  Multifunctional and Water‐Resistant MXene‐Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances , 2018, Advanced Functional Materials.

[38]  Mingguo Ma,et al.  Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. , 2018, ACS nano.

[39]  D. Carroll,et al.  Ultrathin, Washable, and Large-Area Graphene Papers for Personal Thermal Management. , 2017, Small.

[40]  Licheng Zhou,et al.  Microstructure Design of Lightweight, Flexible, and High Electromagnetic Shielding Porous Multiwalled Carbon Nanotube/Polymer Composites. , 2017, Small.

[41]  Niranjan Kumar,et al.  Role of oxygen functional groups in reduced graphene oxide for lubrication , 2017, Scientific Reports.

[42]  Xiaodong Zhuang,et al.  Flexible All‐Solid‐State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene , 2017 .

[43]  J. Coleman,et al.  Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites , 2016, Science.

[44]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[45]  Licheng Zhou,et al.  Lightweight and Anisotropic Porous MWCNT/WPU Composites for Ultrahigh Performance Electromagnetic Interference Shielding , 2016 .

[46]  Licheng Zhou,et al.  Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding , 2016 .

[47]  D. Chung,et al.  Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness , 1997 .