Multiple Lunberger observer for an induction motor represented by decoupled multiple model

This paper addresses the analysis and design of the state estimation of the induction motor (IM) speed as a non linear system, subject of several disturbances as load disturbances and parameters variation represented by a multiple model. Thus, in this paper, we propose the synthesis of a Lunberger multiple observer. This study consists of estimating the asynchronous machine speed through the determination of each local observer earning. The obtained sub observers are interpolated using the validity concept. Experimental results for 1kw IM modeling are operated on a dSpace system with DS1104 controller board based on digital signal processor (DSP) TMS320F240. Obtained results shows the performances of the proposed multiple observer.

[1]  A. Akhenak Conception d'observateurs non linéaires par approche multimodèle : application au diagnostic , 2004 .

[2]  Keinosuke Fukunaga,et al.  A Graph-Theoretic Approach to Nonparametric Cluster Analysis , 1976, IEEE Transactions on Computers.

[3]  W. Marsden I and J , 2012 .

[4]  Zohra Kardous Sur la modélisation et la commande multimodèle des processus complexes et/ou incertains , 2004 .

[5]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[6]  Rainer Palm,et al.  Observers for Takagi-Sugeno fuzzy systems , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[7]  Didier Maquin,et al.  Fault diagnosis for nonlinear systems represented by heterogeneous multiple models , 2010, 2010 Conference on Control and Fault-Tolerant Systems (SysTol).

[8]  Rodolfo Orjuela Contribution à l'estimation d'état et au diagnostic des systèmes représentés par des multimodèles , 2008 .

[9]  Abdelkader El Kamel,et al.  On the residue formulation in multimodel control , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[10]  Silvio Simani,et al.  Model-Based Fault Diagnosis Techniques , 2003 .

[11]  Didier Maquin,et al.  Sliding mode multiple observer for fault detection and isolation , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[12]  Mickael Rodrigues Diagnostic et Commande Active Tolérante aux Défauts appliqués aux Systèmes décrits par des Multi-Modèles Linéaires , 2005 .

[13]  Mohammed Chadli,et al.  Design of a sliding mode fuzzy observer for uncertain Takagi-Sugeno fuzzy model : application to automatic steering of vehicles , 2007 .

[14]  R. Longchamp,et al.  A Minimax Approach for Multi-Objective Controller Design Using Multiple Models , 1999 .

[15]  Ben Hamed Mouna,et al.  Internal Model Controller of an ANN Speed Sensorless Controlled Induction Motor Drives , 2007 .

[16]  Pierre Borne,et al.  A Neural Approach of Multimodel Representation of Complex Processes , 2008, Int. J. Comput. Commun. Control.

[17]  Didier Maquin,et al.  Proportional-Integral observer design for nonlinear uncertain systems modelled by a multiple model approach , 2008, 2008 47th IEEE Conference on Decision and Control.

[18]  M. Oudghiri Commande multi-modèles tolérante aux défauts : Application au contrôle de la dynamique d'un véhicule automobile. , 2008 .

[19]  Didier Maquin,et al.  State estimation for non-linear systems using a decoupled multiple model , 2008, Int. J. Model. Identif. Control..

[20]  Steven X. Ding,et al.  Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools , 2008 .