A Faster Parameterized Algorithm for Treedepth

The width measure treedepth, also known as vertex ranking, centered coloring and elimination tree height, is a well-established notion which has recently seen a resurgence of interest. We present an algorithm which—given as input an n-vertex graph, a tree decomposition of width w, and an integer t—decides whether the input graph has treedepth at most t in time 2 O(wt) ·n. We use this to construct further algorithms which do not require a tree decomposition as part of their input: A simple algorithm which decides treedepth in linear time for a fixed t, thus answering an open question posed by Ossona de Mendez and Nesetřil as to whether such an algorithm exists, a fast algorithm with running time \(2^{O(t^2)} \cdot n\) and an algorithm for chordal graphs with running time 2 O(t logt)·n.

[1]  Charles E. Leiserson,et al.  Area-efficient graph layouts , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[2]  Dániel Marx,et al.  Known algorithms on graphs of bounded treewidth are probably optimal , 2010, SODA '11.

[3]  Alejandro A. Schäffer,et al.  Optimal Node Ranking of Trees in Linear Time , 1989, Inf. Process. Lett..

[4]  D. Spielman,et al.  Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[5]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..

[6]  Joseph W. H. Liu The role of elimination trees in sparse factorization , 1990 .

[7]  Klaus Jansen,et al.  Rankings of Graphs , 1998, SIAM J. Discret. Math..

[8]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[9]  Bengt Aspvall,et al.  Finding minimum height elimination trees for interval graphs in polynomial time , 1994 .

[10]  Jitender S. Deogun,et al.  On Vertex Ranking for Permutations and Other Graphs , 1994, STACS.

[11]  Michal Pilipczuk,et al.  Computing Tree-Depth Faster Than 2 n , 2013, IPEC.

[12]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[13]  Jaroslav Nesetril,et al.  Sparsity - Graphs, Structures, and Algorithms , 2012, Algorithms and combinatorics.

[14]  Bora Uçar,et al.  Constructing Elimination Trees for Sparse Unsymmetric Matrices , 2013, SIAM J. Matrix Anal. Appl..

[15]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[16]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[17]  Martin Grohe,et al.  The complexity of first-order and monadic second-order logic revisited , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[18]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[19]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[20]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[21]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[22]  Adam Nadolski,et al.  Vertex rankings of chordal graphs and weighted trees , 2006, Inf. Process. Lett..

[23]  Michal Pilipczuk,et al.  An O(c^k n) 5-Approximation Algorithm for Treewidth , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[24]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[25]  Charles E. Leiserson,et al.  Area-Efficient Graph Layouts (for VLSI) , 1980, FOCS.

[26]  Suzanne M. Seager,et al.  Ordered colourings , 1995, Discret. Math..

[27]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.

[28]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .