Probabilistic constrained load flow based on sensitivity analysis

This paper presents a method for network constrained setting of power system control variables based on probabilistic load flow analysis. The method determines operating constraint violations for a whole planning period together with the probability of each violation. An iterative algorithm is subsequently employed providing adjustments of the control variables based on sensitivity analysis of the constrained variables with respect to the control variables. The method is applied to the IEEE 14 busbar system and to a realistic model of the Hellenic interconnected power system indicating its suitability for short-term operational planning applications. >

[1]  M. E. El-Hawary,et al.  A comparison of probabilistic perturbation and deterministic based optimal power flow solutions , 1991 .

[2]  R. N. Allan,et al.  Linear dependence between nodal powers in probabilistic a.c. load flow , 1977 .

[3]  O. Alsac,et al.  Security analysis and optimization , 1987, Proceedings of the IEEE.

[4]  Francisco D. Galiana,et al.  A survey of the optimal power flow literature , 1991 .

[5]  Ronald N. Allan,et al.  Probabilistic analysis of power flows , 1974 .

[6]  C. J. Bridenbaugh,et al.  Voltage control improvement through capacitor and transformer tap optimization , 1992 .

[7]  Ron Allan,et al.  Probabilistic load flow considering network outages , 1985 .

[8]  Peter W. Sauer,et al.  Constrained stochastic power flow analysis , 1982 .

[9]  R. F. Simmons,et al.  Probabilistic power-flow techniques extended and applied to operational decision making , 1976 .

[10]  Eric Hcbson,et al.  Network Constrained Reactive Power Control Using Linear Programming , 1980, IEEE Transactions on Power Apparatus and Systems.

[11]  J. A. Findlay,et al.  Control variable adjustment in load flows , 1988 .

[12]  A. Monticelli,et al.  An integrated methodology for VAr sources planning , 1988 .

[13]  K. Aoki,et al.  An Algorithm for Constrained Load Flow , 1984, IEEE Transactions on Power Apparatus and Systems.

[14]  A. M. Leite da Silva,et al.  Probabilistic load flow by a multilinear simulation algorithm , 1990 .

[15]  A. M. Leite da Silva,et al.  Probabilistic load flow techniques applied to power system expansion planning , 1990 .

[16]  A. Kishore,et al.  Static Optimization of Reactive Power Sources by use of Sensitivity Parameters , 1971 .

[17]  R. Yokoyama,et al.  Constrained Load Flow Using Recursive Quadratic Programming , 1987, IEEE Transactions on Power Systems.

[18]  G. A. Maria,et al.  Optimization of fixed tap transformer setting in bulk electric systems , 1991 .

[19]  K. Mamandur,et al.  Automatic Adjustment of Generator Voltages in Newton-Raphson Mehtod of Power Flow Solutions , 1982, IEEE Transactions on Power Apparatus and Systems.

[20]  R.N. Allan,et al.  Evaluation Methods and Accuracy in Probabilistic Load Flow Solutions , 1981, IEEE Transactions on Power Apparatus and Systems.

[21]  Ronald N. Allan,et al.  Probabilistic load flow using multilinearisations , 1981 .

[22]  Ignacio J. Pérez-Arriaga,et al.  A security-constrained decomposition approach to optimal reactive power planning , 1991 .

[23]  R.N. Allan,et al.  Probabilistic Load Flow Considering Dependence Between Input Nodal Powers , 1984, IEEE Transactions on Power Apparatus and Systems.

[24]  O. Alsac,et al.  Fast Decoupled Load Flow , 1974 .

[25]  William F. Tinney,et al.  Power Flow Solution by Newton's Method , 1967 .

[26]  W. Scott Meyer,et al.  Automatic Adjustment of Transformer and Phase-Shifter Taps in the Newton Power Flow , 1971 .

[27]  Barbara Borkowska,et al.  Probabilistic Load Flow , 1974 .