Systems of diagram categories and -theory. I

To any left system of diagram categories or to any left pointed derivateur (in the sense of Grothendieck) a K-theory space is associated. This K-theory space is shown to be canonically an infinite loop space and to have a lot of common properties with Waldhausen's K-theory. A weaker version of additivity is shown. Also, Quillen's K-theory of a large class of exact categories including the abelian categories is proved to be a retract of the K-theory of the associated derivateur.

[1]  A. Kuku,et al.  Higher Algebraic K-Theory , 2006 .

[2]  G. Garkusha Systems of diagram categories and K-theory. II , 2005 .

[3]  A. Neeman The K -Theory of Triangulated Categories , 2005 .

[4]  M. Schlichting Delooping the K-theory of exact categories , 2004 .

[5]  Denis-Charles Cisinski Images directes cohomologiques dans les catégories de modèles , 2003, Annales mathématiques Blaise Pascal.

[6]  B. Toën Homotopical and Higher Categorical Structures in Algebraic Geometry , 2003 .

[7]  G. Vezzosi,et al.  A remark on K-theory and S-categories , 2002, math/0210125.

[8]  M. Schlichting A note on K-theory and triangulated categories , 2002 .

[9]  Avishay Vaknin Determinants in Triangulated Categories , 2001 .

[10]  A. Neeman K-Theory for triangulated categories 3 , 2001 .

[11]  A. Neeman K-Theory for Triangulated Categories 3 1/2 (A): A Detailed Proof of the Theorem of Homological Functors Dedicated to Daniel Quillen and to the Memory of Robert Thomason , 2000 .

[12]  Marco Schlichting Délaçage de la K-théorie des catégories exactes et K-groupes négatifs , 2000 .

[13]  A. Neeman $K$-theory for triangulated categories $3\frac 12$. A.: a detailed proof of the theorem of homological functors , 2000 .

[14]  Bernhard Keller,et al.  Derived Categories and Their Uses , 1996 .

[15]  V. Snaith Higher algebraic -theory , 1994 .

[16]  R. McCarthy On fundamental theorems of algebraic K-theory , 1993 .

[17]  K. Bernhard DERIVED CATEGORIES AND UNIVERSAL PROBLEMS , 1991 .

[18]  A. Neeman The derived category of an exact category , 1990 .

[19]  B. Keller Chain complexes and stable categories , 1990 .

[20]  R. Thomason,et al.  Higher Algebraic K-Theory of Schemes and of Derived Categories , 1990 .

[21]  R. Staffeldt On Fundamental Theorems of Algebraic K-Theory , 1989 .

[22]  C. Weibel,et al.  K-theory homology of spaces , 1989 .

[23]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[24]  W. Dwyer,et al.  Calculating simplicial localizations , 1980 .

[25]  W. Dwyer,et al.  Simplicial localizations of categories , 1980 .

[26]  F. Waldhausen Algebraic K-Theory of generalized free products, part 1 , 1978 .

[27]  F. Waldhausen Algebraic K-Theory of generalized free products, part 2 , 1978 .

[28]  A. K. Bousfield,et al.  Homotopy theory of Γ-spaces, spectra, and bisimplicial sets , 1978 .

[29]  F. Waldhausen ALGEBRAIC K-THEORY OF SPACES I , 1978 .

[30]  G. Segal,et al.  Categories and cohomology theories , 1974 .

[31]  Kenneth S. Brown,et al.  Abstract homotopy theory and generalized sheaf cohomology , 1973 .

[32]  D. Quillen,et al.  Higher algebraic K-theory: I , 1973 .

[33]  S. Lane Categories for the Working Mathematician , 1971 .

[34]  M. Karoubi,et al.  Séminaire Heidelberg-Saarbrücken-Strasbourg sur la K-Théorie , 1970 .