Rare earth sulfates in aqueous systems: Thermodynamic modeling of binary and multicomponent systems over wide concentration and temperature ranges

[1]  Lifeng Zhang,et al.  Recovery of rare earth elements from phosphate rock by hydrometallurgical processes - A critical review , 2018 .

[2]  Jiahua Zhu,et al.  Formation of Zr-based bulk metallic glass with large amount of yttrium addition , 2018 .

[3]  Ali Eslamimanesh,et al.  Rare-earth elements in aqueous chloride systems: Thermodynamic modeling of binary and multicomponent systems in wide concentration ranges , 2017 .

[4]  Miles Wilklow-Marnell,et al.  Catalytic oxidation of carbon monoxide by α-alumina supported 3 nm cerium dioxide nanoparticles , 2017 .

[5]  A Walton,et al.  Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment. , 2017, Waste management.

[6]  H. Le,et al.  A perovskite-structured aluminium-substituted lithium lanthanum titanate as a potential artificial solid-electrolyte interface for aqueous rechargeable lithium-metal-based batteries , 2017 .

[7]  Song Wenjing,et al.  Effect of lanthanum promoter on the catalytic performance of levulinic acid hydrogenation over Ru/carbon fiber catalyst , 2017 .

[8]  Eun Mi Kim,et al.  Effect of the ion-beam bombardment and annealing temperature on sol-gel derived yttrium aluminum oxide film as liquid crystal alignment layer , 2017 .

[9]  T. Windus,et al.  Cerium-Catalyzed Hydrosilylation of Acrylates to Give α-Silyl Esters. , 2017, Angewandte Chemie.

[10]  Haji Hassan Masjuki,et al.  A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils , 2017 .

[11]  A. M. Leman,et al.  Advanced Catalytic Converter in Gasoline Enginer Emission Control: A Review , 2017 .

[12]  G. Azimi,et al.  Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4 , 2016 .

[13]  J. Brugger,et al.  Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations , 2016 .

[14]  Corby G. Anderson,et al.  Rare Earths: Market Disruption, Innovation, and Global Supply Chains , 2016 .

[15]  J. Kosinski,et al.  Thermodynamic modeling of aqueous systems containing amines and amine hydrochlorides: Application to methylamine, morpholine, and morpholine derivatives , 2016 .

[16]  A. Ellern,et al.  Homoleptic Divalent Dialkyl Lanthanide-Catalyzed Cross-Dehydrocoupling of Silanes and Amines , 2016 .

[17]  W. Rankin,et al.  Review of High-Temperature Recovery of Rare Earth (Nd/Dy) from Magnet Waste , 2016, Journal of Sustainable Metallurgy.

[18]  Ali Eslamimanesh,et al.  Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags. , 2016, Environmental science & technology.

[19]  A. Anderko,et al.  Modeling the Properties of H 2 S/CO 2 /Salt/Water Systems in Wide Ranges of Temperature and Pressure , 2015 .

[20]  Ali Eslamimanesh,et al.  Effects of Simulated Rare Earth Recycling Wastewaters on Biological Nitrification. , 2015, Environmental science & technology.

[21]  D. Watanabe,et al.  Effect of Yttrium Addition on Glass-Forming Ability and Magnetic Properties of Fe–Co–B–Si–Nb Bulk Metallic Glass , 2015 .

[22]  Tedd E. Lister,et al.  Recovery of critical and value metals from mobile electronics enabled by electrochemical processing , 2014 .

[23]  X. Qu,et al.  Anti-biofouling polymer-decorated lutetium-based nanoparticulate contrast agents for in vivo high-resolution trimodal imaging. , 2014, Small.

[24]  T. Yoshizumi,et al.  Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure. , 2014, Nanoscale.

[25]  Shi-bo Liu,et al.  Two-micron thulium laser resection of the distal ureter and bladder cuff during nephroureterectomy for upper urinary tract urothelial carcinoma , 2014, Lasers in Medical Science.

[26]  Tom Van Gerven,et al.  Recycling of rare earths: a critical review , 2013 .

[27]  Yoshiyuki Inaguma,et al.  A rechargeable lithium–air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator , 2013 .

[28]  Adam Jordens,et al.  A review of the beneficiation of rare earth element bearing minerals , 2013 .

[29]  G. Moldoveanu,et al.  Recovery of rare earth elements adsorbed on clay minerals: II. Leaching with ammonium sulfate , 2013 .

[30]  Arthur E. Martell,et al.  Critical Stability Constants , 2011 .

[31]  T. Graedel,et al.  Global in-use stocks of the rare Earth elements: a first estimate. , 2011, Environmental science & technology.

[32]  Pei-ming Wang,et al.  Modeling chemical equilibria, phase behavior, and transport properties in ionic liquid systems , 2011 .

[33]  D. Diamond,et al.  U.S. Department of Energy Critical Materials Strategy , 2010 .

[34]  J. N. Brönsted Sur la Relation entre Solubilité et point de Fusion Inverse , 2010 .

[35]  G. Schüchner,et al.  Löslichkeit von Seltenerdsulfaten in Schwefelsäure , 2010 .

[36]  J. Kosinski,et al.  Modeling chemical and phase equilibria in geochemical systems using a speciation-based model , 2010 .

[37]  C. A. Morais,et al.  Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide , 2010 .

[38]  A. Bernardes,et al.  Spent NiMH batteries—The role of selective precipitation in the recovery of valuable metals , 2009 .

[39]  A. Williams-Jones,et al.  A spectrophotometric study of Nd(III), Sm(III) and Er(III) complexation in sulfate-bearing solutions at elevated temperatures , 2008 .

[40]  Ishak Karakaya,et al.  Rare earth double sulfates from pre-concentrated bastnasite , 2008 .

[41]  E. Lokshin,et al.  Effect of sulfuric acid and sodium cations on the solubility of lanthanides in phosphoric acid , 2008 .

[42]  E. Lokshin,et al.  A study of the solubility of yttrium, praseodymium, neodymium, and gadolinium sulfates in the presence of sodium and potassium in sulfuric-phosphoric acid solutions at 20°C , 2007 .

[43]  R. Young,et al.  Modeling phase equilibria and speciation in mixed-solvent electrolyte systems: II. Liquid–liquid equilibria and properties of associating electrolyte solutions☆ , 2006 .

[44]  N. Krishnamurthy,et al.  Extractive metallurgy of rare earths , 1992 .

[45]  R. Young,et al.  Modeling phase equilibria and speciation in mixed-solvent electrolyte systems , 2004 .

[46]  R. Byrne,et al.  Determination of SO4β1 for yttrium and the rare earth elements at I = 0.66 m and t = 25°C—implications for YREE solution speciation in sulfate-rich waters , 2004 .

[47]  Markus P. Hehlen,et al.  Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors , 2004 .

[48]  Andrzej Anderko,et al.  A speciation-based model for mixed-solvent electrolyte systems , 2002 .

[49]  Loris Pietrelli,et al.  Rare earths recovery from NiMH spent batteries , 2002 .

[50]  Ken-ichi Ueda,et al.  Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials , 2002 .

[51]  Stephen E. Creager,et al.  Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions , 2002 .

[52]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures : Standard partial molal properties of organic species , 2002 .

[53]  J. A. Rard,et al.  Apparent molar heat capacities and apparent molar volumes ofY2(SO4)3(aq),La2(SO4)3(aq),Pr2(SO4)3(aq),Nd2(SO4)3(aq),Eu2(SO4)3(aq),Dy2(SO4)3(aq),Ho2(SO4)3(aq), andLu2(SO4)3(aq)atT = 298.15 K andp = 0.1 MPa , 2001 .

[54]  T. Mioduski Identification of Saturating Solid Phases in the System Ce2(SO4)3-H2O from the Solubility Data , 1999 .

[55]  S. Yarbro,et al.  Prediction of heat capacities of solid inorganic salts from group contributions , 1996 .

[56]  Everett L. Shock,et al.  Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures , 1995 .

[57]  M. Milanova,et al.  Solubility of some lanthanide sulfates in polycomponent systems containing H2SO4 , 1993 .

[58]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[59]  J. Schott,et al.  The density model for estimation of thermodynamic parameters of reactions at high temperatures and pressures , 1991 .

[60]  J. A. Rard Isopiestic determination of the osmotic and activitycoefficients of Aqueous Lu2(SO4)3 , 1990 .

[61]  J. A. Rard Isopiestic determination of the osmotic and activity coefficients of aqueous Lu2(SO4)3 at 25°C , 1990 .

[62]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[63]  修彰 佐藤,et al.  硫酸塩水溶液中のSm2(SO4)3およびNd2(SO4)3の溶解度 , 1989 .

[64]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C , 1988 .

[65]  J. A. Rard Aqueous solubilities of praseodymium, europium, and lutetium sulfates , 1988 .

[66]  H. Helgeson,et al.  Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures; Revised Equations of State for the Standard Partial Molal Properties of Ions and Electrolytes , 1988, American Journal of Science.

[67]  J. Zemaitis,et al.  Handbook of aqueous electrolyte thermodynamics , 1986 .

[68]  T. Mioduski,et al.  ARE THE PRE-LANTHANIDES SIMILAR TO THE LANTHANIDE IONS IN AQUEOUS METHANOL? , 1984 .

[69]  P. G. Hill,et al.  A Fundamental Equation of State for Heavy Water , 1982 .

[70]  Kenneth S. Pitzer,et al.  ELECTROLYTES: FROM DILUTE SOLUTIONS TO FUSED SALTS , 1980 .

[71]  F. H. Spedding,et al.  The coordination (hydration) of rare earth ions in aqueous chloride solutions from x‐ray diffraction. III. SmCl3, EuCl3, and series behavior , 1980 .

[72]  F. H. Spedding,et al.  The coordination (hydration) of rare earth ions in aqueous chloride solutions from x-ray diffraction. II. LaCI 3 , PrCI 3 , and NdC1 3 a) , 1979 .

[73]  F. H. Spedding,et al.  The coordination (hydration) of rare earth ions in aqueous chloride solutions from x ray diffraction. I.TbCl3,DyCl3, ErCl3,TmCl3,and LuCl3 , 1979 .

[74]  J. Saja,et al.  Growth and some properties of cerium sulphate enneahydrate single crystals , 1978 .

[75]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[76]  W. L. Marshall,et al.  Solubility and thermodynamic functions for a 3–2 salt, samarium sulfate, in water and sulfuric acid solutions at temperatures to 350°C☆ , 1975 .

[77]  J. Prausnitz,et al.  Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems , 1975 .

[78]  H. Powell Entropy titrations: a reassessment of data for the reaction of the sulphate ion with trivalent lanthanoid ions , 1974 .

[79]  G. Soave Equilibrium constants from a modified Redlich-Kwong equation of state , 1972 .

[80]  C. H. Bartholomew,et al.  Calorimetrically determined log K, ΔH°, and ΔS° values for the interaction of sulphate ion with several bi- and ter-valent metal ions , 1969 .

[81]  K. Gschneidner On the valences of europium and ytterbium in compounds , 1969 .

[82]  G. Choppin,et al.  Lanthanide and actinide sulfate complexes—I: Determination of stability constants , 1967 .

[83]  M. H. Lietzke,et al.  The solubility of lanthanum sulphate in sulphuric acid solutions at elevated temperatures , 1966 .

[84]  J. Geusic,et al.  LASER OSCILLATIONS IN Nd‐DOPED YTTRIUM ALUMINUM, YTTRIUM GALLIUM AND GADOLINIUM GARNETS , 1964 .

[85]  W. L. Marshall,et al.  The Solubility od Several Metal Sulfates at High Temperature and Pressure in Water and in Aqueous Uranyl Sulfate Solution1 , 1957 .

[86]  F. H. Spedding,et al.  Conductances, Solubilities and Ionization Constants of Some Rare Earth Sulfates in Aqueous Solutions at 25° , 1954 .

[87]  T. W. Newton,et al.  A Spectrophotometric Study of the Complex Formed between Cerous and Sulfate Ions1 , 1953 .

[88]  W. M. Latimer Methods of Estimating the Entropies of Solid Compounds , 1951 .

[89]  S. Mayer,et al.  ION EXCHANGE MEASUREMENTS OF ACTIVITY COEFFICIENTS AND ASSOCIATION CONSTANTS OF CEROUS SALTS IN MIXED ELECTROLYTES , 1951 .

[90]  T. Moeller,et al.  Observations on Rare Earths Double Sodium Sulfate Precipitation for Separation of the Terbium and Yttrium Earths , 1945 .

[91]  W. Wallace,et al.  Heats of Dilution and Relative Heat Contents of Aqueous Solutions of Lanthanum Chloride and Lanthanum Sulfate at 25 , 1943 .

[92]  W. Schröder,et al.  Über Die ternären Systeme Cerium (3)‐sulfat–Alkalisulfat–Wasser. II. Das ternäre System Cerium(3)‐sulfat‐Ammoniumsulfat‐Wasser. 1 , 1938 .

[93]  W. Fernelius,et al.  Demonstration of a negative temperature coefficient of solubility , 1937 .

[94]  M. Voogd Les hydrates du Sulfate de Cérium et les Points de Fusion Inverses , 2010 .

[95]  J. Friend CCXIII.—The solubility of neodymium sulphate in water and in sulphuric acid solutions at various temperatures. A new hydrate , 1930 .

[96]  Günther Rienäcker,et al.  CCXXI.—The solubilities of the octahydrates of the rare-earth sulphates , 1930 .

[97]  W. Rodebush,et al.  THE FREEZING POINTS OF VERY DILUTE SOLUTIONS OF ELECTROLYTES , 1925 .

[98]  B. S. Hopkins,et al.  The Solubility of Yttrium Salts , 1924 .

[99]  D. Bissell,et al.  GADOLINIUM SODIUM SULFATE. , 1916 .

[100]  D. Keyes,et al.  THE DOUBLE SULFATES OF SAMARIUM WITH SODIUM AND AMMONIUM. , 1914 .

[101]  C. James,et al.  YTTRIUM SODIUM SULFATE. , 1913 .

[102]  W. Muthmann,et al.  Ueber Trennung der Ceritmetalle und die Löslichkeit ihrer Sulfate in Wasser , 1898 .