A biplex approach to PageRank centrality: From classic to multiplex networks.

In this paper, we present a new view of the PageRank algorithm inspired by multiplex networks. This new approach allows to introduce a new centrality measure for classic complex networks and a new proposal to extend the usual PageRank algorithm to multiplex networks. We give some analytical relations between these new approaches and the classic PageRank centrality measure, and we illustrate the new parameters presented by computing them on real underground networks.

[1]  Mason A. Porter,et al.  Comparing Community Structure to Characteristics in Online Collegiate Social Networks , 2008, SIAM Rev..

[2]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[3]  Francisco Pedroche,et al.  A new method for comparing rankings through complex networks: Model and analysis of competitiveness of major European soccer leagues , 2013, Chaos.

[4]  R. Criado,et al.  A Perron-Frobenius theory for block matrices associated to a multiplex network , 2014, 1411.7757.

[5]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[6]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[7]  S. Derrible Network Centrality of Metro Systems , 2012, PloS one.

[8]  Victoria E. Sánchez,et al.  Comparing series of rankings with ties by using complex networks: An analysis of the Spanish stock market (IBEX-35 index) , 2015, Networks Heterog. Media.

[9]  Marián Boguñá,et al.  Approximating PageRank from In-Degree , 2007, WAW.

[10]  Sergio Gómez,et al.  Random walk centrality in interconnected multilayer networks , 2015, ArXiv.

[11]  Taher H. Haveliwala,et al.  Adaptive methods for the computation of PageRank , 2004 .

[12]  Ginestra Bianconi,et al.  Multiplex PageRank , 2013, PloS one.

[13]  R. Bru,et al.  C ´ ALCULO DEL VECTOR PAGERANK DE GOOGLE MEDIANTE EL M ´ ETODO ADITIVO DE SCHWARZ , 2005 .

[14]  Miguel Romance,et al.  Eigenvector centrality of nodes in multiplex networks , 2013, Chaos.

[15]  A. Arenas,et al.  Models of social networks based on social distance attachment. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Sergio Gómez,et al.  Ranking in interconnected multilayer networks reveals versatile nodes , 2015, Nature Communications.

[17]  Ronald Fagin,et al.  Comparing Partial Rankings , 2006, SIAM J. Discret. Math..

[18]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[19]  Sergio Gómez,et al.  Centrality rankings in multiplex networks , 2014, WebSci '14.

[20]  Francisco Pedroche,et al.  On the Localization of the Personalized PageRank of Complex Networks , 2012, ArXiv.

[21]  A. Arenas,et al.  Mathematical Formulation of Multilayer Networks , 2013, 1307.4977.

[22]  Albert Solé-Ribalta,et al.  Navigability of interconnected networks under random failures , 2013, Proceedings of the National Academy of Sciences.