Crustal stabilization: Evidence from the geochemistry and U–Pb detrital zircon geochronology of quartzites from Simlipal Complex, Singhbhum Craton, India

[1]  Ajay K. Singh,et al.  Age, provenance and tectonic setting of metasedimentary rocks of the Simlipal Complex, Singhbhum Craton, eastern India , 2021 .

[2]  G. Ghosh,et al.  Transition from alluvial to wave-tide-dominated Meso-Neoarchean shelf sedimentation in the Mankarchua Quartzite, Singhbhum craton, eastern India , 2021 .

[3]  Rajat Mazumder,et al.  Paleoarchean terrestrial to shallow marine sedimentation on Singhbhum Craton, eastern India (the Western Iron Ore Group) , 2021 .

[4]  S. H. Alvi,et al.  Geochemical Characteristics of Quartzite in Parts of Paleoproterozoic Dhanjori Group, Singhbhum Craton, Eastern India: Implications for Provenance and Paleoweathering , 2021, Journal of the Geological Society of India.

[5]  Peter A. Cawood,et al.  Unravelling depositional setting, age and provenance of the Simlipal volcano-sedimentary complex, Singhbhum craton: Evidence for Hadean crust and Mesoarchean marginal marine sedimentation , 2021 .

[6]  J. Mukhopadhyay,et al.  Internal Stratigraphy of the Mesoarchean Keonjhar Siliciclastics, Singhbhum Craton, Eastern India: Paleogeographic Implications , 2021, Journal of the Geological Society of India.

[7]  Ajay K. Singh,et al.  Shock Metamorphic Features in the Archean Simlipal Complex, Singhbhum Craton, Eastern India: Possible Remnant of a Large Impact Structure , 2021, Journal of the Geological Society of India.

[8]  Saheli De Alluvial fan to shallow marine sedimentation record in the ~3.0 Ga Keonjhar Quartzite, Singhbhum Craton, India: An example of Phanerozoic style passive margin sedimentation from the Mesoarchean , 2020 .

[9]  M. Santosh,et al.  Mesoarchean gabbro-anorthosite complex from Singhbhum Craton, India , 2020 .

[10]  S. Dey,et al.  Mechanism of Paleoarchean continental crust formation as archived in granitoids from northern part of Singhbhum Craton, eastern India , 2020 .

[11]  Dhruba Mukhopadhyay and Abdul Matin The Architecture and Evolution of the Singhbhum Craton , 2020, Episodes.

[12]  T. Chaudhuri A review of Hadean to Neoarchean crust generation in the Singhbhum Craton, India and possible connection with Pilbara Craton, Australia: The geochronological perspective , 2020, Earth-Science Reviews.

[13]  S. Dey,et al.  Building the core of a Paleoarchean continent: Evidence from granitoids of Singhbhum Craton, eastern India , 2019 .

[14]  D. Upadhyay,et al.  Formation of Paleoarchean-Mesoarchean Na-rich (TTG) and K-rich granitoid crust of the Singhbhum craton, eastern India: Constraints from major and trace element geochemistry and Sr-Nd-Hf isotope composition , 2019, Precambrian Research.

[15]  P. Vermeesch,et al.  Genetic relationship among komatiites and associated basalts in the Badampahar greenstone belt (3.25–3.10 Ga), Singhbhum Craton, Eastern India , 2019, Precambrian Research.

[16]  S. Dey,et al.  A new cache of Eoarchaean detrital zircons from the Singhbhum craton, eastern India and constraints on early Earth geodynamics , 2019, Geoscience Frontiers.

[17]  S. Reddy,et al.  Evolution of the Singhbhum Craton and supracrustal provinces from age, isotopic and chemical constraints , 2019, Earth-Science Reviews.

[18]  T. Nägler,et al.  Genesis of the Singhbhum Craton, eastern India; implications for Archean crust-mantle evolution of the Earth , 2019, Chemical Geology.

[19]  D. Upadhyay,et al.  Evidence of crustal reworking in the Mesoarchean: Insights from geochemical, U-Pb zircon and Nd isotopic study of a 3.08–3.12 Ga ferro-potassic granite-gneiss from north-eastern margin of Singhbhum Craton, India , 2019, Lithos.

[20]  Yi Hao,et al.  Pore characteristics and influencing factors of different types of shales , 2019, Marine and Petroleum Geology.

[21]  Sayan Biswas,et al.  Palaeoarchaean sedimentation and magmatic processes in the eastern Iron Ore Group, eastern India: A commentary , 2019, Geological Journal.

[22]  Peter A. Cawood,et al.  Rates of generation and growth of the continental crust , 2019, Geoscience Frontiers.

[23]  Scott R. Miller,et al.  Detrital Zircons Reveal Evidence of Hadean Crust in the Singhbhum Craton, India , 2018, The Journal of Geology.

[24]  Dunyi Liu,et al.  Evidence of Enriched, Hadean Mantle Reservoir from 4.2-4.0 Ga zircon xenocrysts from Paleoarchean TTGs of the Singhbhum Craton, Eastern India , 2018, Scientific Reports.

[25]  G. Bedoya,et al.  Developmental pathways inferred from modularity, morphological integration and fluctuating asymmetry patterns in the human face , 2018, Scientific Reports.

[26]  B. Su,et al.  Zircon Trace Element Constraints on the Evolution of the Paleoproterozoic Birimian Granitoids of the West African Craton (Ghana) , 2018, Journal of Earth Science.

[27]  A. S. Venkatesh,et al.  Geochemistry of Archean Radioactive Quartz Pebble Conglomerates and Quartzites from western margin of Singhbhum-Orissa Craton, eastern India: Implications on Paleo-weathering, provenance and tectonic setting , 2017 .

[28]  Peter A. Cawood,et al.  Earth's Continental Lithosphere Through Time , 2017 .

[29]  S. Dey,et al.  Generation and evolution of Palaeoarchaean continental crust in the central part of the Singhbhum craton, eastern India , 2017 .

[30]  C. Baiyegunhi,et al.  Geochemistry of sandstones and shales from the Ecca Group, Karoo Supergroup, in the Eastern Cape Province of South Africa: Implications for provenance, weathering and tectonic setting , 2017 .

[31]  Xiaoli Shi,et al.  The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB) , 2017 .

[32]  T. Harrison,et al.  Hadean Zircon Petrochronology , 2017 .

[33]  M. Santosh,et al.  Paleoproterozoic arc basalt-boninite-high magnesian andesite-Nb enriched basalt association from the Malangtoli volcanic suite, Singhbhum Craton, eastern India: Geochemical record for subduction initiation to arc maturation continuum , 2017 .

[34]  vinod k. singh,et al.  Paleoarchean Zircons from Quartzite of South Bundelkhand Supracrustal Complex:Origin and Implications for Crustal Evolution in Bundelkhand Craton, Central India , 2017 .

[35]  J. Mukhopadhyay,et al.  Provenance of >2.8 Ga Keonjhar Quartzite, Singhbhum Craton, Eastern India: Implications for the Nature of Mesoarchean Upper Crust and Geodynamics , 2016, The Journal of Geology.

[36]  A. Saha,et al.  Major, trace and platinum group element (PGE) geochemistry of Archean Iron Ore Group and Proterozoic Malangtoli metavolcanic rocks of Singhbhum Craton, Eastern India: Inferences on mantle melting and sulphur saturation history , 2016 .

[37]  G. Ghosh,et al.  Uraniferous paleoplacers of the Mesoarchean Mahagiri Quartzite, Singhbhum craton, India: Depositional controls, nature and source of > 3.0 Ga detrital uraninites , 2016 .

[38]  V. Balaram,et al.  Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: Constraints on provenance and tectonic setting , 2015 .

[39]  A. Saha,et al.  Boninitic metavolcanic rocks and island arc tholeiites from the Older Metamorphic Group (OMG) of Singhbhum Craton, eastern India: Geochemical evidence for Archean subduction processes , 2015 .

[40]  C. Kirkland,et al.  Zircon Th/U ratios in magmatic environs , 2015 .

[41]  W. Altermann,et al.  Geochemical and ion-microprobe U–Pb zircon constraints on the Archaean evolution of Singhbhum Craton, eastern India , 2014 .

[42]  G. Ghosh,et al.  Oxygenation of the Archean atmosphere: New paleosol constraints from eastern India , 2014 .

[43]  Koichiro Watanabe,et al.  Zircon morphology, geochronology and trace element geochemistry of the granites from the Huangshaping polymetallic deposit, South China: Implications for the magmatic evolution and mineralization processes , 2014 .

[44]  Robert W. Nesbitt,et al.  Geochemical discrimination of hydrothermal and igneous zircon in the Iberian Pyrite Belt, Spain , 2014 .

[45]  K. Ali,et al.  Zircon trace element geochemical constraints on the evolution of the Ediacaran (600–614 Ma) post-collisional Dokhan Volcanics and Younger Granites of SE Sinai, NE Arabian–Nubian Shield , 2013 .

[46]  S. Verma,et al.  New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins , 2013 .

[47]  Y. Lee,et al.  Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting , 2013 .

[48]  Bloemsma,et al.  Modelling the joint variability of grain size and chemical composition in sediments (vol 280, pg 135, 2012): Erratum , 2012 .

[49]  E. Watson,et al.  Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas , 2012 .

[50]  H. N. Bhattacharya,et al.  Tectonostratigraphic and geochronologic reappraisal constraining the growth and evolution of Singhbhum Archaean craton, eastern India , 2012, Journal of the Geological Society of India.

[51]  Bing Zhang,et al.  A Neoproterozoic seamount in the Paleoasian Ocean: Evidence from zircon U-Pb geochronology and geochemistry of the Mayile ophiolitic mélange in West Junggar, NW China , 2012 .

[52]  G. Ghosh,et al.  A 3.51 Ga bimodal volcanics‐BIF‐ultramafic succession from Singhbhum Craton: implications for Palaeoarchaean geodynamic processes from the oldest greenstone succession of the Indian subcontinent , 2012 .

[53]  Z. Ouyang,et al.  Effects of space weathering on diagnostic spectral features: Results from He+ irradiation experiments , 2012 .

[54]  Peng Huijuan Basic characteristics of zircon trace elements and their genetic significances in Jiama Copper Polymetallic Deposit , 2012 .

[55]  L. Yongsheng,et al.  Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS , 2010 .

[56]  I. González-Álvarez,et al.  REE and HFSE mobility due to protracted flow of basinal brines in the mesoproterozoic Belt-Purcell Supergroup, Laurentia , 2010 .

[57]  I. Queralt,et al.  Sedimentary petrology and geochemistry of siliciclastic rocks from the upper Jurassic Tordillo Formation (Neuquén Basin, western Argentina): Implications for provenance and tectonic setting , 2008 .

[58]  T. Harrison,et al.  Early (≥ 4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry results for Hadean zircons , 2008 .

[59]  S. Wilde,et al.  Ti-in-zircon thermometry: applications and limitations , 2008 .

[60]  P. Kelemen,et al.  Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance , 2007 .

[61]  E. Watson,et al.  New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers , 2007 .

[62]  B. Xia,et al.  Geochemistry of the sedimentary rocks from the Nanxiong Basin, South China and implications for provenance, paleoenvironment and paleoclimate at the K/T boundary , 2007 .

[63]  M. Marroni,et al.  Geochemistry and Petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins , 2007 .

[64]  N. Murthy,et al.  Multielement Analysis of Soils by Wavelength-Dispersive X-ray Fluorescence Spectrometry , 2007 .

[65]  M. Kusiak,et al.  A trace element and chemical Th–U total Pb dating study in the lower Belt-Purcell Supergroup, Western North America: Provenance and diagenetic implications , 2006 .

[66]  V. Perrone,et al.  Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani mountains, southern Italy , 2006 .

[67]  J. B. Thomas,et al.  Crystallization thermometers for zircon and rutile , 2006 .

[68]  S. Misra Precambrian Chronostratigraphic Growth of Singhbhum-Orissa Craton, Eastern Indian Shield: An Alternative Model , 2006 .

[69]  T. M. Harrison,et al.  Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth , 2005, Science.

[70]  E. Hegner,et al.  Provenance of late Ordovician to early Cretaceous sedimentary rocks from southern Ghana, as inferred from Nd isotopes and trace elements , 2005 .

[71]  S. Misra,et al.  Geochronological Constraints on Evolution of Singhbhum Mobile Belt and Associated Basic Volcanics of Eastern Indian Shield , 2005 .

[72]  S. Ringrose,et al.  Cryptic indicators of provenance from the geochemistry of the Okavango Delta sediments, Botswana , 2005 .

[73]  R. Korsch,et al.  of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards , 2004 .

[74]  S. Verma,et al.  Geochemistry of Sandstones from the Upper Miocene Kudankulam Formation, Southern India: Implications for Provenance, Weathering, and Tectonic Setting , 2004 .

[75]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[76]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[77]  R. L. Cullers Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA , 2002 .

[78]  S. Sarkar,et al.  Evolution of Mayurbhanj Granite Pluton, eastern Singhbhum, India: a case study of petrogenesis of an A-type granite in bimodal association , 2002 .

[79]  W. Griffin,et al.  Igneous zircon: trace element composition as an indicator of source rock type , 2002 .

[80]  D. Rubatto Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism , 2002 .

[81]  E. Watson,et al.  Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping , 2001 .

[82]  Scott M. McLennan,et al.  Relationships between the trace element composition of sedimentary rocks and upper continental crust , 2001 .

[83]  V. Podkovyrov,et al.  Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling , 2000 .

[84]  T. Ireland,et al.  Rare earth element chemistry of zircon and its use as a provenance indicator , 2000 .

[85]  R. L. Cullers The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA : implications for provenance and metamorphic studies , 2000 .

[86]  H. Ishiga,et al.  Geochemistry of Permian–Triassic shales in the Salt Range, Pakistan: implications for provenance and tectonism at the Gondwana margin , 1999 .

[87]  N. Clauer,et al.  Characterization, provenance, and tectonic setting of Fig Tree greywackes from the Archaean Barberton Greenstone Belt, South Africa , 1999 .

[88]  A. Saha,et al.  207Pb/206Pb zircon ages and the evolution of the Singhbhum Craton, eastern India: an ion microprobe study , 1999 .

[89]  R. L. Cullers,et al.  The provenance and chemical variation of sandstones associated with the Mid-continent Rift System, U.S.A. , 1998 .

[90]  W. Griffin,et al.  Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons , 1998, Mineralogical Magazine.

[91]  P. Hoskin Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICPMS : A consideration and comparison of two broadly competitive techniques , 1998 .

[92]  H. Ohmoto,et al.  Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada , 1997 .

[93]  G. M. Young,et al.  Effects of Chemical Weathering and Sorting on the Petrogenesis of Siliciclastic Sediments, with Implications for Provenance Studies , 1996, The Journal of Geology.

[94]  M. M. Palrecha,et al.  CHEMICAL AGE OF DETRITAL ZIRCONS FROM THE BASAL QUARTZ-PEBBLE CONGLOMERATEOF DHANJORI GROUP, SINGHBHUM CRATON, EASTERN INDIA , 1996 .

[95]  G. M. Young,et al.  Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance , 1995 .

[96]  D. Lowe,et al.  The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States , 1995 .

[97]  K. H. Wedepohl,et al.  The negative Eu anomaly in Archean sedimentary rocks: Implications for decomposition, age and importance of their granitic sources , 1995 .

[98]  W. Griffin,et al.  THREE NATURAL ZIRCON STANDARDS FOR U‐TH‐PB, LU‐HF, TRACE ELEMENT AND REE ANALYSES , 1995 .

[99]  S. Taylor,et al.  Early Proterozoic crustal evolution: Geochemical and NdPb isotopic evidence from metasedimentary rocks, southwestern North America , 1995 .

[100]  W. McDonough,et al.  The composition of the Earth , 1995 .

[101]  X. Gu Geochemical characteristics of the Triassic Tethys-turbidites in northwestern Sichuan, China: Implications for provenance and interpretation of the tectonic setting , 1994 .

[102]  R. L. Cullers The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA , 1994 .

[103]  R. L. Cullers The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the Wet Mountains region, Colorado, U.S.A. , 1994 .

[104]  A. Saha M-27. Crustal Evolution of Singhbhum-North Orissa, Eastern India , 1994 .

[105]  S. McLennan Weathering and Global Denudation , 1993, The Journal of Geology.

[106]  K. Condie Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales , 1993 .

[107]  D. K. McDaniel,et al.  Geochemical approaches to sedimentation, provenance, and tectonics , 1993 .

[108]  B. Upton,et al.  The chemistry of zircon: Variations within and between large crystals from syenite and alkali basalt xenoliths , 1991 .

[109]  S. Taylor,et al.  Sedimentary Rocks and Crustal Evolution: Tectonic Setting and Secular Trends , 1991, The Journal of Geology.

[110]  S. Taylor,et al.  Geochemical and NdSr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations , 1990 .

[111]  L. Heaman,et al.  The chemical composition of igneous zircon suites: implications for geochemical tracer studies , 1990 .

[112]  K. Condie,et al.  Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic evolution during the early Proterozoic , 1990 .

[113]  J. Winchester,et al.  Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland , 1989 .

[114]  G. M. Young,et al.  Formation and Diagenesis of Weathering Profiles , 1989, The Journal of Geology.

[115]  Scott M. McLennan,et al.  Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes , 1989 .

[116]  A. Basu,et al.  Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, U.S.A. , 1988 .

[117]  M. Herron Geochemical classification of terrigenous sands and shales from core or log data , 1988 .

[118]  K. Condie,et al.  Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance , 1987 .

[119]  B. Roser,et al.  Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio , 1986, The Journal of Geology.

[120]  P. Dutta,et al.  Alluvial sandstone composition and paleoclimate; I, Framework mineralogy , 1986 .

[121]  K. Crook,et al.  Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins , 1986 .

[122]  G. M. Young,et al.  Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations , 1984 .

[123]  R. K. Verma,et al.  Gravity field over Singhbhum, its relationship to geology and tectonic history , 1984 .

[124]  H. Fujimaki Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid , 1986 .

[125]  M. Bhatia Plate Tectonics and Geochemical Composition of Sandstones , 1983, The Journal of Geology.

[126]  G. M. Young,et al.  Early Proterozoic climates and plate motions inferred from major element chemistry of lutites , 1982, Nature.

[127]  H. Nesbitt,et al.  Quantification of weathering, soil geochemistry and soil fertility , 1981 .

[128]  E. Watson Some experimentally determined zircon/liquid partition coefficients for the rare earth elements , 1980 .

[129]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[130]  Jean Lajoie,et al.  Sand and Sandstone , 1974 .

[131]  Robert L. Folk,et al.  Petrology of Sedimentary Rocks , 1974 .

[132]  H. Nagasawa,et al.  Rare earth concentrations in zircons and apatites and their host dacites and granites , 1970 .

[133]  L. Ahrens,et al.  Observations on the Tn-U relationship in zircons from granitic rocks and from kimberlites , 1967 .

[134]  R. Harriss,et al.  Geochemical and mineralogical studies on the weathering of granitic rocks , 1966 .