Cocyclic Hadamard codes

We demonstrate that many well-known binary, quaternary, and q-ary codes are cocyclic Hadamard codes; that is, derived from a cocyclic generalized Hadamard matrix or its equivalents. Nonlinear cocyclic Hadamard codes meet the generalized Plotkin bound. Using presemifield multiplication cocycles, we construct new equivalence classes of cocyclic Hadamard codes which meet the Plotkin bound.

[1]  Reginaldo Palazzo,et al.  An algorithm to construct strongly controllable group codes from an abstract group , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[2]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[3]  G. Hughes,et al.  Constacyclic codes and cocycles , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[4]  A. A. I. Perera,et al.  Codes from Cocycles , 1997, AAECC.

[5]  Kathy J. Horadam,et al.  Cocyclic Generalised Hadamard Matrices and Central Relative Difference Sets , 1998, Des. Codes Cryptogr..

[6]  Serdar Boztas Constacyclic codes and constacyclic DFTs , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[7]  Vladimir D. Tonchev Self-orthogonal designs and extremal doubly even codes , 1989, J. Comb. Theory, Ser. A.

[8]  Noboru Ito,et al.  On Hadamard Groups , 1994 .

[9]  P. Vijay Kumar,et al.  On the existence of square dot-matrix patterns having a specific three-valued periodic-correlation function , 1988, IEEE Transactions on Information Theory.

[10]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[11]  Richard J. Turyn An Infinite Class of Williamson Matrices , 1972, J. Comb. Theory, Ser. A.

[12]  Yu Qing Chen On the Existence of Abelian Hadamard Difference Sets and a New Family of Difference Sets , 1997 .

[13]  Jonathan Jedwab,et al.  Generalized perfect arrays and menon difference sets , 1992, Des. Codes Cryptogr..