Heuristics for determining the number of warehouses for storing non-compatible products

In this paper we discuss a version of the classical knapsack problem, where the objective is to minimize the number of warehouses needed to store given items, each with some space requirements. In this version, some of the items are incompatible with each other, and cannot be stored together. We apply some newly developed heuristics to this problem and compare the results with other available algorithms. The computational results are presented and indicate that higher quality solutions can be obtained using the new heuristics.

[1]  Paul E. Sweeney,et al.  Cutting and Packing Problems: A Categorized, Application-Orientated Research Bibliography , 1992 .

[2]  David S. Johnson,et al.  Approximation Algorithms for Bin-Packing — An Updated Survey , 1984 .

[3]  Nicos Christofides,et al.  The Loading Problem , 1971 .

[4]  E. Kay,et al.  Graph Theory. An Algorithmic Approach , 1975 .

[5]  Samuel Eilon An enhanced algorithm for the loading problem , 1984 .

[6]  Takayuki Osogami,et al.  Local Search Algorithms for the Bin Packing Problem and Their Relationships to Various Construction Heuristics , 2003, J. Heuristics.

[7]  Giorgio Ausiello,et al.  Algorithm Design for Computer System Design , 1984, International Centre for Mechanical Sciences.

[8]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[9]  Alain Hertz,et al.  Ants can colour graphs , 1997 .

[10]  Stefanos Katsavounis,et al.  Minimum number of warehouses for storing simultaneously compatible products , 2003 .

[11]  Alain Hertz,et al.  A variable neighborhood search for graph coloring , 2003, Eur. J. Oper. Res..

[12]  Emanuel Falkenauer,et al.  A hybrid grouping genetic algorithm for bin packing , 1996, J. Heuristics.

[13]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[14]  Michael Randolph Garey,et al.  Approximation algorithms for bin-packing , 1984 .

[15]  Fred W. Glover,et al.  A Hybrid Improvement Heuristic for the One-Dimensional Bin Packing Problem , 2004, J. Heuristics.

[16]  José M. Valério de Carvalho,et al.  Exact solution of bin-packing problems using column generation and branch-and-bound , 1999, Ann. Oper. Res..

[17]  Frederick Ducatelle,et al.  Ant colony optimization and local search for bin packing and cutting stock problems , 2004, J. Oper. Res. Soc..

[18]  Krzysztof Fleszar,et al.  New heuristics for one-dimensional bin-packing , 2002, Comput. Oper. Res..

[19]  Michel Gendreau,et al.  Heuristics and lower bounds for the bin packing problem with conflicts , 2004, Comput. Oper. Res..