Modelling nematode movement using time-fractional dynamics.
暂无分享,去创建一个
Iain M Young | J. Crawford | I. Young | S. Hapca | M. Wilson | Simona Hapca | John W Crawford | Keith MacMillan | Mike J Wilson | K. Macmillan
[1] R. Haydock,et al. Vector continued fractions using a generalized inverse , 2003, math-ph/0310041.
[2] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[3] Bryan S. Griffiths,et al. Nematode movement along a chemical gradient in a structurally heterogeneous environment. 1. Experiment , 1997 .
[4] Magnus Wiktorsson,et al. Irregular walks and loops combines in small-scale movement of a soil insect: implications for dispersal biology. , 2004, Journal of theoretical biology.
[5] Mingzhou Ding,et al. Processes with long-range correlations : theory and applications , 2003 .
[6] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[7] Laure Coutin,et al. Operators associated with stochastic differential equations driven by fractional Brownian motions , 2005 .
[8] Magnus Wiktorsson,et al. Modelling the movement of a soil insect. , 2004, Journal of theoretical biology.
[9] E. Teramoto,et al. Mathematical Topics in Population Biology, Morphogenesis and Neurosciences , 1987 .
[10] Simon A. Levin,et al. Ecological and Evolutionary Aspects of Dispersal , 1987 .
[11] E. Barkai. CTRW pathways to the fractional diffusion equation , 2001, cond-mat/0108024.
[12] S. Levin. Lectu re Notes in Biomathematics , 1983 .
[13] V. V. Krishnan,et al. The Effects of Edge Permeability and Habitat Geometry on Emigration from Patches of Habitat , 1987, The American Naturalist.
[14] F. Bigler,et al. An individual-based model of Trichogramma foraging behaviour : parameter estimation for single females , 1996 .
[15] M. Levandowsky,et al. Random movements of soil amebas , 1997 .
[16] H. Larralde,et al. Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi) , 2003, Behavioral Ecology and Sociobiology.
[17] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[18] D. Macdonald,et al. Scale‐free dynamics in the movement patterns of jackals , 2002 .
[19] S. Benhamou,et al. Spatial analysis of animals' movements using a correlated random walk model* , 1988 .
[20] D. Glen,et al. Mass cultivation and storage of the rhabditid nematode Phasmarhabditis hermaphrodita, a biocontrol agent for slugs , 1993 .
[21] W. H. Neill,et al. Modelling animal movement as a persistent random walk in two dimensions: expected magnitude of net displacement , 2000 .
[22] J. Klafter,et al. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .
[23] D. Glen,et al. The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs , 1993 .
[24] Nathanaël Enriquez. A simple construction of the fractional Brownian motion , 2004 .
[25] H. Preisler,et al. Modeling animal movements using stochastic differential equations , 2004 .
[26] P. A. Prince,et al. Lévy flight search patterns of wandering albatrosses , 1996, Nature.
[27] Peter J. Gregory,et al. A general random walk model for the leptokurtic distribution of organism movement: Theory and application , 2007 .
[28] H. T. Banks,et al. Parameter estimation techniques for interaction and redistribution models: a predator-prey example , 1987, Oecologia.
[29] J. M. Thomas,et al. Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .
[30] P. Kareiva,et al. Analyzing insect movement as a correlated random walk , 1983, Oecologia.
[31] I. Glazer,et al. Comparison of Entomopathogenic Nematode Dispersal from Infected Hosts Versus Aqueous Suspension , 1996 .
[32] W. J. Bell. Searching Behaviour: The Behavioural Ecology of Finding Resources , 1991 .
[33] T. J. Roper,et al. Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[34] R. Metzler,et al. Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation , 2002 .
[35] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[36] M. Chitwood,et al. Plant Parasitic Nematodes , 1981 .