A four-dimensional plus hysteresis chaos generator

This paper discusses a four-dimensional plus hysteresis autonomous chaotic circuit. The circuit dynamics are described by two symmetric four-dimensional linear equations connected to each other by hysteresis switchings. We transform the equation into Jordan form and derive theoretical formulas of its three-dimensional return map, its Jacobian matrix and its Jacobian. These formulas can be developed easily to general dimensional cases and are used to evaluate Lyapunov exponents. Also we have discovered a torus doubling route to chaos and then to hyperchaos. Some of the return map attractors are confirmed by laboratory experiments. A rough two parameters bifurcation diagram is also given. >

[1]  Leon O. Chua,et al.  Chua's Circuit: an Overview Ten Years Later , 1994, J. Circuits Syst. Comput..

[2]  Robert W. Newcomb,et al.  Chaos generation using binary hysteresis , 1986 .

[3]  T. Saito Reality of chaos in four-dimensional hysteretic circuits , 1991 .

[4]  L. Chua,et al.  GLOBAL BIFURCATION ANALYSIS OF THE DOUBLE SCROLL CIRCUIT , 1991 .

[5]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[6]  T. Saito,et al.  On fundamental bifurcations from a hysteresis hyperchaos generator , 1994 .

[7]  Shigetoshi Nara,et al.  Memory search using complex dynamics in a recurrent neural network model , 1993, Neural Networks.

[8]  O. Rössler CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS , 1979 .

[9]  Maciej J. Ogorzalek,et al.  Taming Chaos: Part 11-Control , 1993 .

[10]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .

[11]  E. Lorenz The local structure of a chaotic attractor in four dimensions , 1984 .

[12]  L. Chua,et al.  A universal circuit for studying and generating chaos. I. Routes to chaos , 1993 .

[13]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[14]  L. Chua,et al.  Chaos via torus breakdown , 1987 .

[15]  Kunihiko Kaneko,et al.  Oscillation and Doubling of Torus , 1984 .

[16]  Maciej Ogorzalek,et al.  Taming chaos. I. Synchronization , 1993 .

[17]  T. Saito An approach toward higher dimensional hysteresis chaos generators , 1990 .

[18]  I. Shimada,et al.  A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .

[19]  Chaos in a four-variable piecewise-linear system of differential equations , 1988 .

[20]  T. Saito A chaos generator based on a quasi-harmonic oscillator , 1985 .

[21]  Leon O. Chua,et al.  Spread Spectrum Communication Through Modulation of Chaos , 1993 .

[22]  M. Rabinovich,et al.  Stochastic oscillations in dissipative systems , 1981 .

[23]  Ditto,et al.  Experimental control of chaos. , 1990, Physical review letters.

[24]  Maciej Ogorzalek,et al.  Taming chaos. II. Control , 1993 .

[25]  Leon O. Chua Chua's Circuit: Ten Years Later (Special Section on Nonlinear Theory and Its Applications) , 1994 .