NTChem: A high‐performance software package for quantum molecular simulation

In this Software News, the authors introduce NTChem, a new comprehensive software package developed in Japan, for ab initio quantum chemistry calculations. It includes various high-performance computational methods and functions for quantum molecular simulations. Furthermore, it is designed for high-performance calculations on a computer with numerous compute nodes. Therefore, it makes optimum use of the K computer's processing power. This Software News specifically examines the parallel performance of NTChem on the K computer. © 2014 Wiley Periodicals, Inc.

[1]  D. Bernholdt,et al.  Large-scale correlated electronic structure calculations: the RI-MP2 method on parallel computers , 1996 .

[2]  Jon Baker,et al.  Recent developments in the PQS program , 2012 .

[3]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[4]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[5]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[6]  K. Hirao,et al.  Relativistic quantum Monte Carlo method using zeroth-order regular approximation Hamiltonian. , 2010, The Journal of chemical physics.

[7]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[8]  Nobuaki Koga,et al.  Interaction frontier orbitals , 1981 .

[9]  Wilson,et al.  Optimized trial wave functions for quantum Monte Carlo calculations. , 1988, Physical review letters.

[10]  Takahito Nakajima,et al.  MPI/OpenMP Hybrid Parallel Algorithm of Resolution of Identity Second-Order Møller-Plesset Perturbation Calculation for Massively Parallel Multicore Supercomputers. , 2013, Journal of chemical theory and computation.

[11]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[12]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[13]  Matthew L. Leininger,et al.  Psi4: an open‐source ab initio electronic structure program , 2012 .

[14]  M. E. Casida,et al.  Progress in time-dependent density-functional theory. , 2011, Annual review of physical chemistry.

[15]  Jürgen Gauss,et al.  Parallel Calculation of CCSD and CCSD(T) Analytic First and Second Derivatives. , 2008, Journal of chemical theory and computation.

[16]  Kenneth Ruud,et al.  Arbitrary-Order Density Functional Response Theory from Automatic Differentiation. , 2010, Journal of chemical theory and computation.

[17]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[18]  Jules W. Moskowitz,et al.  Correlated Monte Carlo wave functions for the atoms He through Ne , 1990 .

[19]  Horst Weiss,et al.  A direct algorithm for self‐consistent‐field linear response theory and application to C60: Excitation energies, oscillator strengths, and frequency‐dependent polarizabilities , 1993 .

[20]  S. Grimme Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .

[21]  Frederick R. Manby,et al.  Automatic code generation in density functional theory , 2001 .

[22]  Yuichi Inadomi,et al.  Multi-physics Extension of OpenFMO Framework , 2007, ArXiv.

[23]  M. E. Casida Time-Dependent Density Functional Response Theory for Molecules , 1995 .

[24]  Hans Ågren,et al.  Calculations of near-edge x-ray-absorption spectra of gas-phase and chemisorbed molecules by means of density-functional and transition-potential theory , 1998 .

[25]  G. Scuseria,et al.  Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. , 2005, The Journal of chemical physics.

[26]  R. Jastrow Many-Body Problem with Strong Forces , 1955 .

[27]  K. Dyall,et al.  Relativistic regular approximations revisited: An infinite-order relativistic approximation , 1999 .

[28]  R. Needs,et al.  Jastrow correlation factor for atoms, molecules, and solids , 2004, 0801.0378.

[29]  T. Nakajima,et al.  Relativistic diffusion Monte Carlo method: zeroth-order regular approximation-diffusion Monte Carlo method in a spin-free formalism. , 2012, The Journal of chemical physics.

[30]  So Hirata,et al.  Time-dependent density functional theory for radicals: An improved description of excited states with substantial double excitation character , 1999 .

[31]  W. Lester,et al.  Quantum Monte Carlo and related approaches. , 2012, Chemical reviews.

[32]  Claudia Filippi,et al.  Energy and variance optimization of many-body wave functions. , 2005, Physical review letters.

[33]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[34]  K. Hirao,et al.  Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method. , 2010, The Journal of chemical physics.

[35]  S. Fahy,et al.  Optimization of configuration interaction coefficients in multideterminant Jastrow–Slater wave functions , 2002 .

[36]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[37]  Benjamin T. Miller,et al.  A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm–Dancoff approximation , 1999 .

[38]  A. Savin,et al.  A new Jastrow factor for atoms and molecules, using two‐electron systems as a guiding principle , 1995 .

[39]  S. Grimme,et al.  Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects. , 2006, Physical chemistry chemical physics : PCCP.

[40]  M. E. Casida,et al.  Troubleshooting time-dependent density-functional theory for photochemical applications: oxirane. , 2007, The Journal of chemical physics.

[41]  Pawel Salek,et al.  A self‐contained and portable density functional theory library for use in Ab Initio quantum chemistry programs , 2007, J. Comput. Chem..

[42]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[43]  James J. P. Stewart,et al.  Fast semiempirical calculations , 1982 .

[44]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[45]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[46]  D. Ceperley,et al.  Monte Carlo simulation of a many-fermion study , 1977 .

[47]  Jing Zhang,et al.  Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences , 2013 .

[48]  Luca Frediani,et al.  The Dalton quantum chemistry program system , 2013, Wiley interdisciplinary reviews. Computational molecular science.

[49]  Kimihiko Hirao,et al.  Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals. , 2007, The Journal of chemical physics.

[50]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[51]  Richard A. Friesner,et al.  Solution of self-consistent field electronic structure equations by a pseudospectral method , 1985 .

[52]  Michael J. Frisch,et al.  Toward a systematic molecular orbital theory for excited states , 1992 .

[53]  Jon Baker,et al.  Q‐Chem 2.0: a high‐performance ab initio electronic structure program package , 2000, J. Comput. Chem..

[54]  Donald G. Truhlar,et al.  Doubly Hybrid Meta DFT: New Multi-Coefficient Correlation and Density Functional Methods for Thermochemistry and Thermochemical Kinetics , 2004 .

[55]  S. Grimme Semiempirical hybrid density functional with perturbative second-order correlation. , 2006, The Journal of chemical physics.

[56]  George B. Bacskay,et al.  A quadratically convergent Hartree—Fock (QC-SCF) method. Application to closed shell systems , 1981 .

[57]  Takeshi Ishikawa,et al.  Theoretical study of the prion protein based on the fragment molecular orbital method , 2009, J. Comput. Chem..

[58]  Hendrik Ulbricht,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2004 .

[59]  K. Morokuma,et al.  ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition , 1996 .

[60]  Thomas Müller,et al.  Columbus—a program system for advanced multireference theory calculations , 2011 .

[61]  David E. Manolopoulos,et al.  Canonical purification of the density matrix in electronic-structure theory , 1998 .

[62]  Kazuya Ishimura,et al.  MPI/OpenMP Hybrid Parallel Algorithm for Hartree−Fock Calculations , 2010 .

[63]  Michio Katouda,et al.  Efficient parallel algorithm of second‐order Møller–Plesset perturbation theory with resolution‐of‐identity approximation (RI‐MP2) , 2009 .

[64]  S. Grimme,et al.  Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. , 2007, Physical chemistry chemical physics : PCCP.

[65]  Fumiyoshi Shoji,et al.  The K computer: Japanese next-generation supercomputer development project , 2011, IEEE/ACM International Symposium on Low Power Electronics and Design.

[66]  C J Umrigar,et al.  Optimization of quantum Monte Carlo wave functions by energy minimization. , 2007, The Journal of chemical physics.

[67]  Kimihiko Hirao,et al.  The higher-order Douglas–Kroll transformation , 2000 .

[68]  B. Roos,et al.  Molcas: a program package for computational chemistry. , 2003 .

[69]  Fumitoshi Sato,et al.  Distributed parallel processing by using the object-oriented technology in ProteinDF program for all-electron calculations on proteins , 2001 .

[70]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[71]  Görling,et al.  Correlation-energy functional and its high-density limit obtained from a coupling-constant perturbation expansion. , 1993, Physical review. B, Condensed matter.

[72]  K. Hirao,et al.  A long-range-corrected time-dependent density functional theory. , 2004, The Journal of chemical physics.

[73]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[74]  Marco Häser,et al.  CALCULATION OF EXCITATION ENERGIES WITHIN TIME-DEPENDENT DENSITY FUNCTIONAL THEORY USING AUXILIARY BASIS SET EXPANSIONS , 1997 .

[75]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[76]  Beverly A. Sanders,et al.  Software design of ACES III with the super instruction architecture , 2011 .

[77]  Kimihiko Hirao,et al.  A new relativistic theory: a relativistic scheme by eliminating small components (RESC) , 1999 .

[78]  K. Hirao,et al.  The Douglas-Kroll-Hess approach. , 2012, Chemical reviews.

[79]  Andreas Dreuw,et al.  Single-reference ab initio methods for the calculation of excited states of large molecules. , 2005, Chemical reviews.

[80]  Generation of functional derivatives in Kohn-Sham density-functional theory , 1997 .

[81]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[82]  Kimihiko Hirao,et al.  Linear-scaling multipole-accelerated Gaussian and finite-element Coulomb method. , 2008, The Journal of chemical physics.

[83]  Frank Neese,et al.  The ORCA program system , 2012 .

[84]  K. Hirao,et al.  A dual-level approach to density-functional theory. , 2006, The Journal of chemical physics.

[85]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[86]  Arnim Hellweg,et al.  Distributed memory parallel implementation of energies and gradients for second-order Møller-Plesset perturbation theory with the resolution-of-the-identity approximation. , 2006, Physical chemistry chemical physics : PCCP.

[87]  Kaori Fukuzawa,et al.  Fragment molecular orbital method: use of approximate electrostatic potential , 2002 .

[88]  Filipp Furche,et al.  Adiabatic time-dependent density functional methods for excited state properties , 2002 .

[89]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .