The mass spectrum of compact remnants from the parsec stellar evolution tracks
暂无分享,去创建一个
[1] Junichiro Makino,et al. Star cluster ecology-IV. Dissection of an open star cluster: photometry , 2001 .
[2] P. Kroupa. On the variation of the initial mass function , 2000, astro-ph/0009005.
[3] London,et al. Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.
[4] T. Contini,et al. Oxygen and nitrogen abundances in nearby galaxies. Correlations between oxygen abundance and macroscopic properties , 2004 .
[5] R. O’Shaughnessy,et al. Binary Mergers and Growth of Black Holes in Dense Star Clusters , 2005, astro-ph/0508224.
[6] M. S. Cooper,et al. Screening factors for nuclear reactions. I. General theory , 1973 .
[7] Bohdan Paczynski,et al. Cosmological gamma-ray bursts , 1991 .
[8] K. Cook,et al. Line-driven winds , ionizing fluxes and UV-spectra of hot stars at extremely low metallicity . I . Very massive O-stars , 2003 .
[9] S. Tsygankov,et al. Spectroscopic evidence for a low-mass black hole in SWIFT J1753.5−0127 , 2014, 1409.4423.
[10] V. Kalogera,et al. Theoretical Black Hole Mass Distributions , 1999, astro-ph/9911312.
[11] J. Oppenheimer,et al. On Massive neutron cores , 1939 .
[12] S. E. Woosley,et al. The Nucleosynthetic Signature of Population III , 2002 .
[13] L. Girardi,et al. New PARSEC evolutionary tracks of massive stars at low metallicity: testing canonical stellar evolution in nearby star-forming dwarf galaxies , 2014, 1410.1745.
[14] A. Weiss,et al. Standard and Nonstandard Plasma Neutrino Emission Revisited , 1994 .
[15] The Neutron star and black hole initial mass function , 1995, astro-ph/9510136.
[16] M. L. Pumo,et al. Evolution of thermally pulsing asymptotic giant branch stars - I. The COLIBRI code , 2013, 1305.4485.
[17] N. Drost,et al. The Astrophysical Multipurpose Software Environment , 2013, 1307.3016.
[18] L. Girardi,et al. EVOLUTION OF THERMALLY PULSING ASYMPTOTIC GIANT BRANCH STARS. IV. CONSTRAINING MASS LOSS AND LIFETIMES OF LOW MASS, LOW METALLICITY AGB STARS , 2014, 1406.0676.
[19] T. Lebzelter,et al. The pulsation of AGB stars in the Magellanic Cloud clusters NGC 1978 and 419 , 2010, 1006.3121.
[20] Douglas P. Hamilton,et al. Production of intermediate-mass black holes in globular clusters , 2001, astro-ph/0106188.
[21] M. Mapelli,et al. Impact of metallicity on the evolution of young star clusters , 2013, 1301.4227.
[22] M. Giersz,et al. Compact binaries in star clusters – II. Escapers and detection rates , 2010, 1008.5060.
[23] S. E. Woosley,et al. How Massive Single Stars End Their Life , 2003 .
[24] Jorick S. Vink,et al. On the metallicity dependence of Wolf-Rayet winds , 2005 .
[25] Bernd Freytag,et al. Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.
[26] C. Kochanek,et al. The search for failed supernovae with the Large Binocular Telescope: first candidates , 2014, 1411.1761.
[27] S. Smartt. Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars , 2015, Publications of the Astronomical Society of Australia.
[28] Austria,et al. Low-temperature gas opacity. ÆSOPUS: a versatile and quick computational tool , 2009, 0907.3248.
[29] R. Narayan,et al. THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.
[30] S. Aarseth. From NBODY1 to NBODY6: The Growth of an Industry , 1999 .
[31] S. Woosley,et al. EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.
[32] S. Woosley,et al. THE COMPACTNESS OF PRESUPERNOVA STELLAR CORES , 2013, 1311.6546.
[33] I. Mandel,et al. THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES , 2010, 1011.1459.
[34] Chris L. Fryer,et al. ON THE MAXIMUM MASS OF STELLAR BLACK HOLES , 2009, 0904.2784.
[35] P. Morel,et al. Survival of a convective core in low-mass solar-like pulsator HD 203608 , 2010, 1002.3461.
[36] M. Mapelli,et al. Dynamics of stellar black holes in young star clusters with different metallicities – I. Implications for X-ray binaries , 2012, 1211.6441.
[37] Spain.,et al. NGC 300 X‐1 is a Wolf–Rayet/black hole binary★ , 2010, 1001.4616.
[38] Simon F. Portegies Zwart,et al. The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters , 2002, astro-ph/0201055.
[39] H. A. Bethe,et al. Supernova mechanisms. [SN 1987a] , 1990 .
[40] L. Girardi,et al. Red Giant evolution and specific problems , 2013, 1301.7687.
[41] T. Bulik,et al. The Total Merger Rate of Compact Object Binaries in the Local Universe , 2007, 0710.0878.
[42] Ryan M. Ferguson,et al. THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS , 2010, The Astrophysical Journal Supplement Series.
[43] Keigo Nitadori,et al. Accelerating nbody6 with graphics processing units , 2012, 1205.1222.
[44] L. Girardi,et al. parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.
[45] M. J. Benacquista,et al. Compact binaries in star clusters – I. Black hole binaries inside globular clusters , 2009, 0910.0546.
[46] N. Itoh,et al. Neutrino Energy Loss in Stellar Interiors , 1985 .
[47] L. Girardi,et al. Discovery of two distinct red clumps in NGC 419: a rare snapshot of a cluster at the onset of degeneracy , 2009, 0901.0773.
[48] G. Torres,et al. ABSOLUTE PROPERTIES OF THE ECLIPSING BINARY SYSTEM AQ SERPENTIS: A STRINGENT TEST OF CONVECTIVE CORE OVERSHOOTING IN STELLAR EVOLUTION MODELS , 2013, 1312.1352.
[49] Stephen J. Smartt,et al. Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.
[50] M. Mapelli,et al. ROCHE-LOBE OVERFLOW SYSTEMS POWERED BY BLACK HOLES IN YOUNG STAR CLUSTERS: THE IMPORTANCE OF DYNAMICAL EXCHANGES , 2014, 1408.1406.
[51] N. Langer,et al. Wind modelling of very massive stars up to 300 solar masses , 2011, 1105.0556.
[52] Forrest J. Rogers,et al. Updated Opal Opacities , 1996 .
[53] C. Ott,et al. BLACK HOLE FORMATION IN FAILING CORE-COLLAPSE SUPERNOVAE , 2010, 1010.5550.
[54] W. Hamann,et al. Mass loss from late-type WN stars and its Z-dependence: very massive stars approaching the Eddington limit , 2008, 0803.0866.
[55] Alexei V. Filippenko,et al. On IC 10 X-1, the Most Massive Known Stellar-Mass Black Hole , 2008, 0802.2716.
[56] Charles D. Bailyn,et al. A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33 , 2007, Nature.
[57] E. Phinney. The Rate of Neutron Star Binary Mergers in the Universe: Minimal Predictions for Gravity Wave Detectors , 1991 .
[58] M. Mapelli,et al. The impact of metallicity-dependent mass-loss versus dynamical heating on the early evolution of star clusters , 2014, 1409.3006.
[59] K. Schawinski,et al. Another thread in the tapestry of stellar feedback: X-ray binaries , 2012, 1203.6847.
[60] Chris L. Fryer. Fallback in stellar collapse , 2006 .
[61] J. Lattimer,et al. Ultimate energy density of observable cold baryonic matter. , 2004, Physical review letters.
[62] J. Downing. Is there a size difference between red and blue globular clusters , 2012, 1204.5363.
[63] Mass Limits For Black Hole Formation , 1999, astro-ph/9902315.
[64] B. Williams,et al. THE SUPERNOVA PROGENITOR MASS DISTRIBUTIONS OF M31 AND M33: FURTHER EVIDENCE FOR AN UPPER MASS LIMIT , 2014, 1410.0018.
[65] C. Ott,et al. THE BLACK HOLE FORMATION PROBABILITY , 2014, 1406.4869.
[66] N. Grevesse,et al. Standard Solar Composition , 1998 .
[67] H. E. DeWitt,et al. Screening Factors for Nuclear Reactions. 11. Intermediate Screen-Ing and Astrophysical Applications , 1973 .
[68] S. Nozawa,et al. The Second Born Corrections to the Electrical and Thermal Conductivities of Dense Matter in the Liquid Metal Phase , 2007, 0708.2967.
[69] Tomasz Bulik,et al. A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.
[70] A. Zezas,et al. The Orbital Period of the Wolf-Rayet Binary IC 10 X-1: Dynamic Evidence that the Compact Object Is a Black Hole , 2007, 0709.2892.
[71] A. Pollock,et al. On the optical counterpart of NGC 300 X-1 and the global Wolf-Rayet content of NGC 300 , 2007, 0705.1544.
[72] D. Holz,et al. COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY , 2011, 1110.1726.
[73] C. Kochanek. FAILED SUPERNOVAE EXPLAIN THE COMPACT REMNANT MASS FUNCTION , 2013, 1308.0013.
[74] H. Janka,et al. PROGENITOR-EXPLOSION CONNECTION AND REMNANT BIRTH MASSES FOR NEUTRINO-DRIVEN SUPERNOVAE OF IRON-CORE PROGENITORS , 2012, 1205.3657.
[75] Frank Timmes,et al. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.
[76] K. Kotake,et al. The red supergiant and supernova rate problems: Implications for core-collapse supernova physics , 2014, 1409.0006.
[77] M. Colpi,et al. Low metallicity and ultra-luminous X-ray sources in the Cartwheel galaxy , 2009, 0902.3540.
[78] M. Colpi,et al. Ultra-luminous X-ray sources and remnants of massive metal-poor stars , 2010, 1005.3548.
[79] R. Kudritzki,et al. WINDS FROM HOT STARS , 2000 .
[80] G. Meynet,et al. Stellar evolution with rotation XI. Wolf-Rayet star populations at different metallicities , 2005 .
[81] M. H. Montgomery,et al. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.
[82] J. Lattimer. The Nuclear Equation of State and Neutron Star Masses , 2012, 1305.3510.
[83] M. Branchesi,et al. Dynamics of stellar black holes in young star clusters with different metallicities – II. Black hole–black hole binaries , 2014, 1404.7147.
[84] J. R. Hurley,et al. Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.
[85] D. Lorimer,et al. A statistical study of 233 pulsar proper motions , 2005, astro-ph/0504584.
[86] D. Garnett. Nitrogen in irregular galaxies , 1990 .
[87] R. Kudritzki. Line-driven Winds, Ionizing Fluxes, and Ultraviolet Spectra of Hot Stars at Extremely Low Metallicity. I. Very Massive O Stars , 2002, astro-ph/0205210.
[88] N. Itoh,et al. Neutrino-pair bremsstrahlung in dense stars. I: Liquid metal case , 1983 .
[89] W. Harris,et al. N-body models of globular clusters: metallicities, half-light radii and mass-to-light ratios , 2012, 1208.4851.
[90] A. Zezas,et al. Compact Object Modeling with the StarTrack Population Synthesis Code , 2005, astro-ph/0511811.
[91] N. University,et al. Close Binary Interactions of Intermediate-Mass Black Holes: Possible Ultraluminous X-Ray Sources? , 2005, astro-ph/0508597.
[92] J. Prieto,et al. THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE , 2011, 1102.1977.
[93] A. Burrows. Colloquium: Perspectives on core-collapse supernova theory , 2012, 1210.4921.
[94] Claus Leitherer,et al. Deposition of Mass, Momentum, and Energy by Massive Stars into the Interstellar Medium , 1992 .
[95] R. Humphreys,et al. Studies of luminous stars in nearby galaxies. III. Comments on the evolution of the most massive stars in the Milky Way and the large magellanic cloud , 1979 .
[96] H. Janka. Explosion Mechanisms of Core-Collapse Supernovae , 2012, 1206.2503.
[97] Roberto Capuzzo-Dolcetta,et al. A fully parallel, high precision, N-body code running on hybrid computing platforms , 2012, J. Comput. Phys..
[98] Mauro Barbieri,et al. Improving PARSEC models for very low mass stars , 2014, 1409.0322.
[99] G. Martínez-Pinedo,et al. Theory of core-collapse supernovae , 2006, astro-ph/0612072.
[100] B. Williams,et al. SUPERNOVA REMNANT PROGENITOR MASSES IN M31 , 2012, 1210.6353.