The mass spectrum of compact remnants from the parsec stellar evolution tracks

The mass spectrum of stellar-mass black holes (BHs) is highly uncertain. Dynamical mass measurements are available only for few ( 10) BHs in X-ray binaries, while theoretical models strongly depend on the hydrodynamics of supernova (SN) explosions and on the evolution of massive stars. In this paper, we present and discuss the mass spectrum of compact remnants that we obtained with SEVN, a new public populationsynthesis code, which couples the PARSEC stellar evolution tracks with up-to-date recipes for SN explosion (depending on the Carbon-Oxygen mass of the progenitor, on the compactness of the stellar core at pre-SN stage, and on a recent two-parameter criterion based on the dimensionless entropy per nucleon at pre-SN stage). SEVN can be used both as a stand-alone code and in combination with direct-summation N-body codes (Starlab, HiGPUs). The PARSEC stellar evolution tracks currently implemented in SEVN predict signicantly larger values of the Carbon-Oxygen core mass with respect to previous models. For most of the SN recipes we adopt, this implies substantially larger BH masses at low metallicity (6 2 10 3 ), than other populationsynthesis codes. The maximum BH mass found with SEVN is 25, 60 and 130 M at metallicity Z = 2 10 2 , 2 10 3 and 2 10 4 , respectively. Mass loss by stellar winds plays a major role in determining the mass of BHs for very massive stars (> 90 M ), while the remnant mass spectrum depends mostly on the adopted SN recipe for lower progenitor masses. We discuss the implications of our results for the transition between NS and BH mass, and for the expected number of massive BHs (with mass > 25 M ) as a function of metallicity.

[1]  Junichiro Makino,et al.  Star cluster ecology-IV. Dissection of an open star cluster: photometry , 2001 .

[2]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[3]  London,et al.  Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.

[4]  T. Contini,et al.  Oxygen and nitrogen abundances in nearby galaxies. Correlations between oxygen abundance and macroscopic properties , 2004 .

[5]  R. O’Shaughnessy,et al.  Binary Mergers and Growth of Black Holes in Dense Star Clusters , 2005, astro-ph/0508224.

[6]  M. S. Cooper,et al.  Screening factors for nuclear reactions. I. General theory , 1973 .

[7]  Bohdan Paczynski,et al.  Cosmological gamma-ray bursts , 1991 .

[8]  K. Cook,et al.  Line-driven winds , ionizing fluxes and UV-spectra of hot stars at extremely low metallicity . I . Very massive O-stars , 2003 .

[9]  S. Tsygankov,et al.  Spectroscopic evidence for a low-mass black hole in SWIFT J1753.5−0127 , 2014, 1409.4423.

[10]  V. Kalogera,et al.  Theoretical Black Hole Mass Distributions , 1999, astro-ph/9911312.

[11]  J. Oppenheimer,et al.  On Massive neutron cores , 1939 .

[12]  S. E. Woosley,et al.  The Nucleosynthetic Signature of Population III , 2002 .

[13]  L. Girardi,et al.  New PARSEC evolutionary tracks of massive stars at low metallicity: testing canonical stellar evolution in nearby star-forming dwarf galaxies , 2014, 1410.1745.

[14]  A. Weiss,et al.  Standard and Nonstandard Plasma Neutrino Emission Revisited , 1994 .

[15]  The Neutron star and black hole initial mass function , 1995, astro-ph/9510136.

[16]  M. L. Pumo,et al.  Evolution of thermally pulsing asymptotic giant branch stars - I. The COLIBRI code , 2013, 1305.4485.

[17]  N. Drost,et al.  The Astrophysical Multipurpose Software Environment , 2013, 1307.3016.

[18]  L. Girardi,et al.  EVOLUTION OF THERMALLY PULSING ASYMPTOTIC GIANT BRANCH STARS. IV. CONSTRAINING MASS LOSS AND LIFETIMES OF LOW MASS, LOW METALLICITY AGB STARS , 2014, 1406.0676.

[19]  T. Lebzelter,et al.  The pulsation of AGB stars in the Magellanic Cloud clusters NGC 1978 and 419 , 2010, 1006.3121.

[20]  Douglas P. Hamilton,et al.  Production of intermediate-mass black holes in globular clusters , 2001, astro-ph/0106188.

[21]  M. Mapelli,et al.  Impact of metallicity on the evolution of young star clusters , 2013, 1301.4227.

[22]  M. Giersz,et al.  Compact binaries in star clusters – II. Escapers and detection rates , 2010, 1008.5060.

[23]  S. E. Woosley,et al.  How Massive Single Stars End Their Life , 2003 .

[24]  Jorick S. Vink,et al.  On the metallicity dependence of Wolf-Rayet winds , 2005 .

[25]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[26]  C. Kochanek,et al.  The search for failed supernovae with the Large Binocular Telescope: first candidates , 2014, 1411.1761.

[27]  S. Smartt Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars , 2015, Publications of the Astronomical Society of Australia.

[28]  Austria,et al.  Low-temperature gas opacity. ÆSOPUS: a versatile and quick computational tool , 2009, 0907.3248.

[29]  R. Narayan,et al.  THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.

[30]  S. Aarseth From NBODY1 to NBODY6: The Growth of an Industry , 1999 .

[31]  S. Woosley,et al.  EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.

[32]  S. Woosley,et al.  THE COMPACTNESS OF PRESUPERNOVA STELLAR CORES , 2013, 1311.6546.

[33]  I. Mandel,et al.  THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES , 2010, 1011.1459.

[34]  Chris L. Fryer,et al.  ON THE MAXIMUM MASS OF STELLAR BLACK HOLES , 2009, 0904.2784.

[35]  P. Morel,et al.  Survival of a convective core in low-mass solar-like pulsator HD 203608 , 2010, 1002.3461.

[36]  M. Mapelli,et al.  Dynamics of stellar black holes in young star clusters with different metallicities – I. Implications for X-ray binaries , 2012, 1211.6441.

[37]  Spain.,et al.  NGC 300 X‐1 is a Wolf–Rayet/black hole binary★ , 2010, 1001.4616.

[38]  Simon F. Portegies Zwart,et al.  The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters , 2002, astro-ph/0201055.

[39]  H. A. Bethe,et al.  Supernova mechanisms. [SN 1987a] , 1990 .

[40]  L. Girardi,et al.  Red Giant evolution and specific problems , 2013, 1301.7687.

[41]  T. Bulik,et al.  The Total Merger Rate of Compact Object Binaries in the Local Universe , 2007, 0710.0878.

[42]  Ryan M. Ferguson,et al.  THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS , 2010, The Astrophysical Journal Supplement Series.

[43]  Keigo Nitadori,et al.  Accelerating nbody6 with graphics processing units , 2012, 1205.1222.

[44]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[45]  M. J. Benacquista,et al.  Compact binaries in star clusters – I. Black hole binaries inside globular clusters , 2009, 0910.0546.

[46]  N. Itoh,et al.  Neutrino Energy Loss in Stellar Interiors , 1985 .

[47]  L. Girardi,et al.  Discovery of two distinct red clumps in NGC 419: a rare snapshot of a cluster at the onset of degeneracy , 2009, 0901.0773.

[48]  G. Torres,et al.  ABSOLUTE PROPERTIES OF THE ECLIPSING BINARY SYSTEM AQ SERPENTIS: A STRINGENT TEST OF CONVECTIVE CORE OVERSHOOTING IN STELLAR EVOLUTION MODELS , 2013, 1312.1352.

[49]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[50]  M. Mapelli,et al.  ROCHE-LOBE OVERFLOW SYSTEMS POWERED BY BLACK HOLES IN YOUNG STAR CLUSTERS: THE IMPORTANCE OF DYNAMICAL EXCHANGES , 2014, 1408.1406.

[51]  N. Langer,et al.  Wind modelling of very massive stars up to 300 solar masses , 2011, 1105.0556.

[52]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[53]  C. Ott,et al.  BLACK HOLE FORMATION IN FAILING CORE-COLLAPSE SUPERNOVAE , 2010, 1010.5550.

[54]  W. Hamann,et al.  Mass loss from late-type WN stars and its Z-dependence: very massive stars approaching the Eddington limit , 2008, 0803.0866.

[55]  Alexei V. Filippenko,et al.  On IC 10 X-1, the Most Massive Known Stellar-Mass Black Hole , 2008, 0802.2716.

[56]  Charles D. Bailyn,et al.  A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33 , 2007, Nature.

[57]  E. Phinney The Rate of Neutron Star Binary Mergers in the Universe: Minimal Predictions for Gravity Wave Detectors , 1991 .

[58]  M. Mapelli,et al.  The impact of metallicity-dependent mass-loss versus dynamical heating on the early evolution of star clusters , 2014, 1409.3006.

[59]  K. Schawinski,et al.  Another thread in the tapestry of stellar feedback: X-ray binaries , 2012, 1203.6847.

[60]  Chris L. Fryer Fallback in stellar collapse , 2006 .

[61]  J. Lattimer,et al.  Ultimate energy density of observable cold baryonic matter. , 2004, Physical review letters.

[62]  J. Downing Is there a size difference between red and blue globular clusters , 2012, 1204.5363.

[63]  Mass Limits For Black Hole Formation , 1999, astro-ph/9902315.

[64]  B. Williams,et al.  THE SUPERNOVA PROGENITOR MASS DISTRIBUTIONS OF M31 AND M33: FURTHER EVIDENCE FOR AN UPPER MASS LIMIT , 2014, 1410.0018.

[65]  C. Ott,et al.  THE BLACK HOLE FORMATION PROBABILITY , 2014, 1406.4869.

[66]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[67]  H. E. DeWitt,et al.  Screening Factors for Nuclear Reactions. 11. Intermediate Screen-Ing and Astrophysical Applications , 1973 .

[68]  S. Nozawa,et al.  The Second Born Corrections to the Electrical and Thermal Conductivities of Dense Matter in the Liquid Metal Phase , 2007, 0708.2967.

[69]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[70]  A. Zezas,et al.  The Orbital Period of the Wolf-Rayet Binary IC 10 X-1: Dynamic Evidence that the Compact Object Is a Black Hole , 2007, 0709.2892.

[71]  A. Pollock,et al.  On the optical counterpart of NGC 300 X-1 and the global Wolf-Rayet content of NGC 300 , 2007, 0705.1544.

[72]  D. Holz,et al.  COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY , 2011, 1110.1726.

[73]  C. Kochanek FAILED SUPERNOVAE EXPLAIN THE COMPACT REMNANT MASS FUNCTION , 2013, 1308.0013.

[74]  H. Janka,et al.  PROGENITOR-EXPLOSION CONNECTION AND REMNANT BIRTH MASSES FOR NEUTRINO-DRIVEN SUPERNOVAE OF IRON-CORE PROGENITORS , 2012, 1205.3657.

[75]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[76]  K. Kotake,et al.  The red supergiant and supernova rate problems: Implications for core-collapse supernova physics , 2014, 1409.0006.

[77]  M. Colpi,et al.  Low metallicity and ultra-luminous X-ray sources in the Cartwheel galaxy , 2009, 0902.3540.

[78]  M. Colpi,et al.  Ultra-luminous X-ray sources and remnants of massive metal-poor stars , 2010, 1005.3548.

[79]  R. Kudritzki,et al.  WINDS FROM HOT STARS , 2000 .

[80]  G. Meynet,et al.  Stellar evolution with rotation XI. Wolf-Rayet star populations at different metallicities , 2005 .

[81]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[82]  J. Lattimer The Nuclear Equation of State and Neutron Star Masses , 2012, 1305.3510.

[83]  M. Branchesi,et al.  Dynamics of stellar black holes in young star clusters with different metallicities – II. Black hole–black hole binaries , 2014, 1404.7147.

[84]  J. R. Hurley,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[85]  D. Lorimer,et al.  A statistical study of 233 pulsar proper motions , 2005, astro-ph/0504584.

[86]  D. Garnett Nitrogen in irregular galaxies , 1990 .

[87]  R. Kudritzki Line-driven Winds, Ionizing Fluxes, and Ultraviolet Spectra of Hot Stars at Extremely Low Metallicity. I. Very Massive O Stars , 2002, astro-ph/0205210.

[88]  N. Itoh,et al.  Neutrino-pair bremsstrahlung in dense stars. I: Liquid metal case , 1983 .

[89]  W. Harris,et al.  N-body models of globular clusters: metallicities, half-light radii and mass-to-light ratios , 2012, 1208.4851.

[90]  A. Zezas,et al.  Compact Object Modeling with the StarTrack Population Synthesis Code , 2005, astro-ph/0511811.

[91]  N. University,et al.  Close Binary Interactions of Intermediate-Mass Black Holes: Possible Ultraluminous X-Ray Sources? , 2005, astro-ph/0508597.

[92]  J. Prieto,et al.  THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE , 2011, 1102.1977.

[93]  A. Burrows Colloquium: Perspectives on core-collapse supernova theory , 2012, 1210.4921.

[94]  Claus Leitherer,et al.  Deposition of Mass, Momentum, and Energy by Massive Stars into the Interstellar Medium , 1992 .

[95]  R. Humphreys,et al.  Studies of luminous stars in nearby galaxies. III. Comments on the evolution of the most massive stars in the Milky Way and the large magellanic cloud , 1979 .

[96]  H. Janka Explosion Mechanisms of Core-Collapse Supernovae , 2012, 1206.2503.

[97]  Roberto Capuzzo-Dolcetta,et al.  A fully parallel, high precision, N-body code running on hybrid computing platforms , 2012, J. Comput. Phys..

[98]  Mauro Barbieri,et al.  Improving PARSEC models for very low mass stars , 2014, 1409.0322.

[99]  G. Martínez-Pinedo,et al.  Theory of core-collapse supernovae , 2006, astro-ph/0612072.

[100]  B. Williams,et al.  SUPERNOVA REMNANT PROGENITOR MASSES IN M31 , 2012, 1210.6353.