The Capacity of Private Information Retrieval From Coded Databases

We consider the problem of private information retrieval (PIR) over a distributed storage system. The storage system consists of <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> non-colluding databases, each storing an MDS-coded version of <inline-formula> <tex-math notation="LaTeX">$M$ </tex-math></inline-formula> messages. In the PIR problem, the user wishes to retrieve one of the available messages without revealing the message identity to any individual database. We derive the information-theoretic capacity of this problem, which is defined as the maximum number of bits of the desired message that can be privately retrieved per one bit of downloaded information. We show that the PIR capacity in this case is <inline-formula> <tex-math notation="LaTeX">$C=(1+{K}/{N}+{K^{2}}/{N^{2}}+\cdots +{K^{M-1}}/{N^{M-1}})^{-1}=(1+R_{c}+R_{c}^{2}+\cdots +R_{c}^{M-1})^{-1}=({1-R_{c}})/({1-R_{c}^{M}})$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$R_{c}$ </tex-math></inline-formula> is the rate of the <inline-formula> <tex-math notation="LaTeX">$(N,K)$ </tex-math></inline-formula> MDS code used. The capacity is a function of the code rate and the number of messages only regardless of the explicit structure of the storage code. The result implies a fundamental tradeoff between the optimal retrieval cost and the storage cost when the storage code is restricted to the class of MDS codes. The result generalizes the achievability and converse results for the classical PIR with replicated databases to the case of MDS-coded databases.

[1]  Salim El Rouayheb,et al.  Private Information Retrieval From MDS Coded Data in Distributed Storage Systems , 2016, IEEE Transactions on Information Theory.

[2]  Hua Sun,et al.  Blind interference alignment for private information retrieval , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[3]  Hua Sun,et al.  The Capacity of Private Information Retrieval , 2017, IEEE Transactions on Information Theory.

[4]  Hua Sun,et al.  The Capacity of Symmetric Private Information Retrieval , 2016, 2016 IEEE Globecom Workshops (GC Wkshps).

[5]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[6]  Kannan Ramchandran,et al.  One extra bit of download ensures perfectly private information retrieval , 2014, 2014 IEEE International Symposium on Information Theory.

[7]  Hirosuke Yamamoto,et al.  Private information retrieval for coded storage , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[8]  William Gasarch A Survey on Private Information Retrieval , 2004 .

[9]  Sennur Ulukus,et al.  Private information retrieval from coded databases , 2017, 2017 IEEE International Conference on Communications (ICC).

[10]  Syed Ali Jafar,et al.  Blind Interference Alignment , 2012, IEEE Journal of Selected Topics in Signal Processing.

[11]  Hua Sun,et al.  Multiround Private Information Retrieval: Capacity and Storage Overhead , 2016, IEEE Transactions on Information Theory.

[12]  Rafail Ostrovsky,et al.  A Survey of Single-Database Private Information Retrieval: Techniques and Applications , 2007, Public Key Cryptography.

[13]  Hua Sun,et al.  The Capacity of Robust Private Information Retrieval With Colluding Databases , 2016, IEEE Transactions on Information Theory.

[14]  Yunnan Wu,et al.  A Survey on Network Codes for Distributed Storage , 2010, Proceedings of the IEEE.

[15]  Eitan Yaakobi,et al.  PIR with Low Storage Overhead: Coding instead of Replication , 2015, ArXiv.