A sparse matrix approach to Bayesian computation in large linear models

The problem of efficient Bayesian computation in the context of linear Gaussian directed acyclic graph models is examined. Unobserved latent variables are grouped together in a block, and sparse matrix techniques for computation are explored. Conditional sampling and likelihood computations are shown to be straightforward using a sparse matrix approach, allowing Markov chain Monte Carlo algorithms with good mixing properties to be developed for problems with many thousands of latent variables.

[1]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[2]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[3]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[4]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[5]  S. Lauritzen Propagation of Probabilities, Means, and Variances in Mixed Graphical Association Models , 1992 .

[6]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[7]  Michael I. Jordan,et al.  Probabilistic Networks and Expert Systems , 1999 .

[8]  S. Chib Calculating posterior distributions and modal estimates in Markov mixture models , 1996 .

[9]  C. Geyer,et al.  Geometric Ergodicity of Gibbs and Block Gibbs Samplers for a Hierarchical Random Effects Model , 1998 .

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  M. Goldstein Bayes Linear Analysis , 2006 .

[12]  H. Rue,et al.  On Block Updating in Markov Random Field Models for Disease Mapping , 2002 .

[13]  Dani Gamerman,et al.  Space-varying regression models: specifications and simulation , 2001, Comput. Stat. Data Anal..

[14]  G. Roberts,et al.  Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .

[15]  Darren J. Wilkinson,et al.  Detecting homogeneous segments in DNA sequences by using hidden Markov models , 2000 .

[16]  L. García-Cortés,et al.  On a multivariate implementation of the Gibbs sampler , 1996, Genetics Selection Evolution.

[17]  A. Gelfand,et al.  Efficient parametrisations for normal linear mixed models , 1995 .

[18]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[19]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[20]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[21]  John M. Olin On MCMC sampling in hierarchical longitudinal models , 1999 .

[22]  Darren J. Wilkinson,et al.  Bayes linear analysis for graphical models: The geometric approach to local computation and interpretive graphics , 2000, Stat. Comput..

[23]  H. Rue Fast sampling of Gaussian Markov random fields , 2000 .

[24]  Darren J. Wilkinson,et al.  Conditional simulation from highly structured Gaussian systems, with application to blocking-MCMC for the Bayesian analysis of very large linear models , 2002, Stat. Comput..

[25]  Erricos John Kontoghiorghes,et al.  Parallel Algorithms for Linear Models: Numerical Methods and Estimation Problems , 2000 .

[26]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .