Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution.

[1]  G. Freddi,et al.  Structure modifications induced in silk fibroin by enzymatic treatments. A Raman study , 2005 .

[2]  Ung-Jin Kim,et al.  Structure and properties of silk hydrogels. , 2004, Biomacromolecules.

[3]  S. Fare',et al.  Silk fibroin-coated three-dimensional polyurethane scaffolds for tissue engineering: interactions with normal human fibroblasts. , 2003, Tissue engineering.

[4]  Mingzhong Li,et al.  Controlling molecular conformation of regenerated wild silk fibroin by aqueous ethanol treatment , 2003 .

[5]  Shenzhou Lu,et al.  Compliant film of regenerated Antheraea pernyi silk fibroin by chemical crosslinking. , 2003, International journal of biological macromolecules.

[6]  P. Petrini,et al.  Silk fibroin/poly(carbonate)-urethane as a substrate for cell growth: in vitro interactions with human cells. , 2003, Biomaterials.

[7]  David L Kaplan,et al.  Silk-based biomaterials. , 2003, Biomaterials.

[8]  Mingzhong Li,et al.  Enzymatic degradation behavior of porous silk fibroin sheets. , 2003, Biomaterials.

[9]  H. Kweon,et al.  Dissolution and characterization of regenerated Antheraea pernyi silk fibroin , 2001 .

[10]  M. Jacquet,et al.  Silk fibroin: Structural implications of a remarkable amino acid sequence , 2001, Proteins.

[11]  Shenzhou Lu,et al.  Study on porous silk fibroin materials. I. Fine structure of freeze dried silk fibroin , 2001 .

[12]  M B McCarthy,et al.  Functionalized silk-based biomaterials for bone formation. , 2001, Journal of biomedical materials research.

[13]  Hideki Sezutsu,et al.  Dynamic Rearrangement Within the Antheraea pernyi Silk Fibroin Gene Is Associated with Four Types of Repetitive Units , 2000, Journal of Molecular Evolution.

[14]  I. Um,et al.  Thermal behavior of regenerated Antheraea pernyi silk fibroin film treated with aqueous methanol , 2000 .

[15]  F. Grosse,et al.  Lessons from nature--protein fibers. , 2000, Journal of biotechnology.

[16]  C. Cho,et al.  Effects of poloxamer on the gelation of silk fibroin , 2000 .

[17]  M. Williamson,et al.  Structural analysis of silk with 13C NMR chemical shift contour plots. , 1999, International Journal of Biological Macromolecules.

[18]  K. Inouye,et al.  Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells. , 1998, Journal of biochemical and biophysical methods.

[19]  M. Tsukada,et al.  Effect of the chemical modification of the arginyl residue in Bombyx mori silk fibroin on the attachment and growth of fibroblast cells. , 1998, Journal of biomedical materials research.

[20]  G. Freddi,et al.  Structure and molecular conformation of Tussah silk fibroin films : Effect of heat treatment , 1997 .

[21]  M. Tsukada,et al.  Chemical modification of the arginyl residue in silk fibroin: 2. Reaction of 1,2-cyclohexanedione in aqueous alkaline medium. , 1996, International journal of biological macromolecules.

[22]  G. Freddi,et al.  Structure and molecular conformation of tussah silk fibroin films: Effect of methanol , 1995 .

[23]  M. Tsukada,et al.  Attachment and growth of cultured fibroblast cells on silk protein matrices. , 1995, Journal of biomedical materials research.

[24]  M. Tsukada,et al.  Attachment and growth of fibroblast cells on silk fibroin. , 1995, Biochemical and biophysical research communications.

[25]  T. Hanawa,et al.  New oral dosage form for elderly patients: preparation and characterization of silk fibroin gel. , 1995, Chemical & pharmaceutical bulletin.

[26]  G. Freddi,et al.  Physical and chemical properties of tussah silk fibroin films , 1994 .

[27]  K. Hirabayashi,et al.  Mechanism of the gelation of fibroin solution , 1993 .

[28]  M. Tsukada,et al.  Physico-chemical properties of silk fibroin membrane as a biomaterial. , 1990, Biomaterials.

[29]  T. Asakura,et al.  Solvent- and mechanical-treatment-induced conformational transition of silk fibroins studies by high-resolution solid-state carbon-13 NMR spectroscopy , 1990 .

[30]  E Ruoslahti,et al.  Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Erkki Ruoslahti,et al.  Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule , 1984, Nature.

[32]  J. Brahms,et al.  Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. , 1980, Journal of molecular biology.

[33]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.