On Pleijel's nodal domain theorem for the Robin problem

We prove an improved Pleijel nodal domain theorem for the Robin eigenvalue problem. In particular we remove the restriction, imposed in previous work, that the Robin parameter be non-negative. We also improve the upper bound in the statement of the Pleijel theorem. In the particular example of a Euclidean ball, we calculate the explicit value of the Pleijel constant for a generic constant Robin parameter and we show that it is equal to the Pleijel constant for the Dirichlet Laplacian on a Euclidean ball.

[1]  Stefano Decio Nodal Sets of Steklov Eigenfunctions near the Boundary: Inner Radius Estimates , 2021, International Mathematics Research Notices.

[2]  B. Helffer,et al.  Courant-sharp Robin eigenvalues for the square: The case of negative Robin parameter , 2020, Asymptotic Analysis.

[3]  B. Helffer,et al.  Courant-sharp Robin eigenvalues for the square and other planar domains , 2018, Portugaliae Mathematica.

[4]  K. Gittins,et al.  Upper bounds for Courant-sharp Neumann and Robin eigenvalues , 2018, Bulletin de la Société mathématique de France.

[5]  V. Bobkov On Exact Pleijel's Constant for Some Domains , 2018, Documenta Mathematica.

[6]  David E. Horsley,et al.  Bessel phase functions: calculation and application , 2017, Numerische Mathematik.

[7]  Corentin L'ena Pleijel’s nodal domain theorem for Neumann and Robin eigenfunctions , 2016, Annales de l'Institut Fourier.

[8]  H. Donnelly Counting nodal domains in Riemannian manifolds , 2014 .

[9]  J. Bourgain On Pleijel's Nodal Domain Theorem , 2013, 1308.4422.

[10]  Stefan Steinerberger,et al.  A Geometric Uncertainty Principle with an Application to Pleijel’s Estimate , 2013, 1306.3103.

[11]  G. Philippis,et al.  Faber–Krahn inequalities in sharp quantitative form , 2013, 1306.0392.

[12]  R. Frank,et al.  Semi-classical analysis of the Laplace operator with Robin boundary conditions , 2012, 1208.2327.

[13]  D. Daners Inverse positivity for general Robin problems on Lipschitz domains , 2009 .

[14]  I. Polterovich Pleijel's nodal domain theorem for free membranes , 2008, 0805.1553.

[15]  S. Zelditch,et al.  Counting Nodal Lines Which Touch the Boundary of an Analytic Domain , 2007, 0710.0101.

[16]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[17]  K. D. Graham Separation of Eigenvalues of the Wave Equation for the Unit Ball in RN , 1973 .

[18]  C. A. Rogers The Packing of Equal Spheres , 1958 .

[19]  J. Peetre A generalization of Courant's nodal domain theorem. , 1957 .

[20]  Arke Pleijel,et al.  Remarks on courant's nodal line theorem , 1956 .

[21]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[22]  P. Bérard,et al.  Inégalités isopérimétriques et applications , 1982 .

[23]  M. Solomjak,et al.  Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory , 1980 .

[24]  A. H. Taub,et al.  Studies In Applied Mathematics , 1971 .

[25]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[26]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[27]  Udk,et al.  OF MATHEMATICAL , 2023 .