Optimal job scheduling in grid computing using efficient binary artificial bee colony optimization

The artificial bee colony has the advantage of employing fewer control parameters compared with other population-based optimization algorithms. In this paper a binary artificial bee colony (BABC) algorithm is developed for binary integer job scheduling problems in grid computing. We further propose an efficient binary artificial bee colony extension of BABC that incorporates a flexible ranking strategy (FRS) to improve the balance between exploration and exploitation. The FRS is introduced to generate and use new solutions for diversified search in early generations and to speed up convergence in latter generations. Two variants are introduced to minimize the makepsan. In the first a fixed number of best solutions is employed with the FRS while in the second the number of the best solutions is reduced with each new generation. Simulation results for benchmark job scheduling problems show that the performance of our proposed methods is better than those alternatives such as genetic algorithms, simulated annealing and particle swarm optimization.

[1]  Luca Maria Gambardella,et al.  Effective Neighborhood Functions for the Flexible Job Shop Problem , 1998 .

[2]  Ian Foster,et al.  The Grid 2 - Blueprint for a New Computing Infrastructure, Second Edition , 1998, The Grid 2, 2nd Edition.

[3]  Peter Brucker,et al.  Scheduling Algorithms , 1995 .

[4]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[5]  Wei-Ping Lee,et al.  A novel artificial bee colony algorithm with diversity strategy , 2011, 2011 Seventh International Conference on Natural Computation.

[6]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[7]  Keith Phalp,et al.  Natural strategies for search , 2009, Natural Computing.

[8]  Tarun Kumar Sharma,et al.  Enhancing the food locations in an Artificial Bee Colony algorithm , 2011, SWIS.

[9]  Peter Brucker,et al.  Job-shop scheduling with multi-purpose machines , 1991, Computing.

[10]  Kuo-Chi Lin,et al.  An incremental genetic algorithm approach to multiprocessor scheduling , 2004, IEEE Transactions on Parallel and Distributed Systems.

[11]  Ladislau Bölöni,et al.  A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems , 2001, J. Parallel Distributed Comput..

[12]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[13]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .

[14]  Alan Burns,et al.  A survey of hard real-time scheduling for multiprocessor systems , 2011, CSUR.

[15]  Dave Berry,et al.  Semantic-supported and agent-based decentralized grid resource discovery , 2008, Future Gener. Comput. Syst..

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  M. Brian Blake,et al.  Service-Oriented Computing and Cloud Computing: Challenges and Opportunities , 2010, IEEE Internet Computing.

[18]  Reza Akbari,et al.  On the performance of bee algorithms for resource-constrained project scheduling problem , 2011, Appl. Soft Comput..

[19]  Fatos Xhafa,et al.  Genetic algorithm based schedulers for grid computing systems , 2007 .

[20]  Ajith Abraham,et al.  Dynamic Trajectory and Convergence Analysis of Swarm Algorithm , 2012, Comput. Informatics.

[21]  Ran He,et al.  An Improved Particle Swarm Optimization Based on Self-Adaptive Escape Velocity , 2005 .

[22]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[23]  YuHan,et al.  An Incremental Genetic Algorithm Approach to Multiprocessor Scheduling , 2004 .

[24]  Rajkumar Buyya,et al.  Nature's heuristics for scheduling jobs on Computational Grids , 2000 .

[25]  Reginald L. Walker Purposive behavior of honeybees as the basis of an experimental search engine , 2007, Soft Comput..

[26]  Ajith Abraham,et al.  Particle Swarm Scheduling for Work-Flow Applications in Distributed Computing Environments , 2008, Metaheuristics for Scheduling in Industrial and Manufacturing Applications.

[27]  Yang Gao,et al.  Adaptive grid job scheduling with genetic algorithms , 2005, Future Gener. Comput. Syst..

[28]  Jianchao Zeng,et al.  Comparison and Analysis of the Selection Mechanism in the Artificial Bee Colony Algorithm , 2009, 2009 Ninth International Conference on Hybrid Intelligent Systems.

[29]  Ajith Abraham,et al.  Chaotic dynamic characteristics in swarm intelligence , 2007, Appl. Soft Comput..

[30]  Renbin Xiao,et al.  Modeling of Ant Colony's Labor Division for the Multi-Project Scheduling Problem and Its Solution by PSO , 2012 .

[31]  Klaus Jansen,et al.  Approximation algorithms for flexible job shop problems , 2000, Int. J. Found. Comput. Sci..

[32]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[33]  Erik Valdemar Cuevas Jiménez,et al.  Multi-circle detection on images using artificial bee colony (ABC) optimization , 2012, Soft Comput..

[34]  K. Chung,et al.  On the application of the borel-cantelli lemma , 1952 .

[35]  Wei Yan,et al.  Special issue on Bio-inspired Learning and Intelligent Systems for Security (BLISS-07) , 2011, Soft Comput..

[36]  Selim G. Akl,et al.  Scheduling Algorithms for Grid Computing: State of the Art and Open Problems , 2006 .

[37]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[38]  Rafael Lahoz-Beltra,et al.  APPENDIX. A SURVEY OF NONPARAMETRIC TESTS FOR THE STATISTICAL ANALYSIS OFEVOLUTIONARY COMPUTATIONAL EXPERIMENTS , 2010 .

[39]  Habiba Drias,et al.  ACO approach with learning for preemptive scheduling of real-time tasks , 2010, Int. J. Bio Inspired Comput..

[40]  Ajith Abraham,et al.  Hybrid differential artificial bee colony algorithm , 2012 .

[41]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms: Second Edition , 2010 .

[42]  Song Wang,et al.  A Hybrid Artificial Bee Colony Algorithm for Flexible Job Shop Scheduling Problems , 2011, Int. J. Comput. Commun. Control.

[43]  Yong Zhao,et al.  Cloud Computing and Grid Computing 360-Degree Compared , 2008, GCE 2008.

[44]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[45]  Klaus Jansen,et al.  Approximation algorithms for flexible job shop problems , 2005, Int. J. Found. Comput. Sci..

[46]  Nirwan Ansari,et al.  A Genetic Algorithm for Multiprocessor Scheduling , 1994, IEEE Trans. Parallel Distributed Syst..

[47]  Zsolt Németh,et al.  Characterizing Grids: Attributes, Definitions, and Formalisms , 2003, Journal of Grid Computing.

[48]  John Levine,et al.  A fast, effective local search for scheduling independent jobs in heterogeneous computing environments , 2003 .

[49]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[50]  Satoshi Fujita,et al.  Approximation algorithms for multiprocessor scheduling problem , 2000 .

[51]  Guoqiang Li,et al.  Development and investigation of efficient artificial bee colony algorithm for numerical function optimization , 2012, Appl. Soft Comput..

[52]  A. Gressner,et al.  P , 2012, Lexikon der Medizinischen Laboratoriumsdiagnostik.

[53]  Narayana Prasad Padhy,et al.  Thermal unit commitment using binary/real coded artificial bee colony algorithm , 2012 .

[54]  Yilong Yin,et al.  SAR image segmentation based on Artificial Bee Colony algorithm , 2011, Appl. Soft Comput..

[55]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[56]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .

[57]  Efrén Mezura-Montes,et al.  Elitist Artificial Bee Colony for constrained real-parameter optimization , 2010, IEEE Congress on Evolutionary Computation.

[58]  Serbia Belgrade Scheduling Independent Tasks: Bee Colony Optimization Approach , 2009 .

[59]  Gui-Ding Gu,et al.  Some conditions for existence and stability of relaxed incomplete LU factorizations , 2001 .

[60]  Jong-Chen Chen,et al.  Assimilating and integrating network signals for solving some complex problems with a multiscale neural architecture , 2012, Soft Comput..

[61]  Ajith Abraham,et al.  A DISCRETE PARTICLE SWARM OPTIMIZATION APPROACH FOR GRID JOB SCHEDULING , 2009 .

[62]  Andries Petrus Engelbrecht,et al.  Binary artificial bee colony optimization , 2011, 2011 IEEE Symposium on Swarm Intelligence.

[63]  Li-Pei Wong,et al.  Bee colony optimisation algorithm with big valley landscape exploitation for job shop scheduling problems , 2010, Int. J. Bio Inspired Comput..

[64]  Mehmet Fatih Tasgetiren,et al.  A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem , 2011, Inf. Sci..

[65]  Fatos Xhafa,et al.  Metaheuristics for Scheduling in Industrial and Manufacturing Applications , 2008, Metaheuristics for Scheduling in Industrial and Manufacturing Applications.

[66]  Rafael Lahoz-Beltra,et al.  A SURVEY OF NONPARAMETRIC TESTS FOR THE STATISTICAL ANALYSIS OF EVOLUTIONARY COMPUTATIONAL EXPERIMENTS , 2010 .

[67]  Alok Singh,et al.  An artificial bee colony algorithm for the minimum routing cost spanning tree problem , 2011, Soft Comput..

[68]  Mu-Chun Su,et al.  A swarm-inspired projection algorithm , 2009, Pattern Recognit..

[69]  John Levine,et al.  A hybrid ant algorithm for scheduling independent jobs in heterogeneous computing environments , 2004 .

[70]  A. Abraham,et al.  Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm , 2010, Future Gener. Comput. Syst..

[71]  Giandomenico Spezzano,et al.  So-Grid: A self-organizing Grid featuring bio-inspired algorithms , 2008, TAAS.

[72]  Ami Marowka,et al.  The GRID: Blueprint for a New Computing Infrastructure , 2000, Parallel Distributed Comput. Pract..

[73]  Ajith Abraham,et al.  A Multi-swarm Approach to Multi-objective Flexible Job-shop Scheduling Problems , 2009, Fundam. Informaticae.

[74]  Arne Thesen,et al.  Design and Evaluation of Tabu Search Algorithms for Multiprocessor Scheduling , 1998, J. Heuristics.

[75]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[76]  Ruay-Shiung Chang,et al.  A new mechanism for resource monitoring in Grid computing , 2009, Future Gener. Comput. Syst..

[77]  Prashant J. Shenoy,et al.  Agile dynamic provisioning of multi-tier Internet applications , 2008, TAAS.

[78]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[79]  D.Ramyachitra,et al.  Artificial Bee Colony Algorithm For Grid Scheduling , 2011 .