Optical imaging in galagos reveals parietal–frontal circuits underlying motor behavior

The posterior parietal cortex (PPC) of monkeys and prosimian galagos contains a number of subregions where complex, behaviorally meaningful movements, such as reaching, grasping, and body defense, can be evoked by electrical stimulation with long trains of electrical pulses through microelectrodes. Shorter trains of pulses evoke no or simple movements. One possibility for the difference in effectiveness of intracortical microstimulation is that long trains activate much larger regions of the brain. Here, we show that long-train stimulation of PPC does not activate widespread regions of frontal motor and premotor cortex but instead, produces focal, somatotopically appropriate activations of frontal motor and premotor cortex. Shorter stimulation trains activate the same frontal foci but less strongly, showing that longer stimulus trains do not produce less specification. Because the activated sites in frontal cortex correspond to the locations of direct parietal–frontal anatomical connections from the stimulated PPC subregions, the results show the usefulness of optical imaging in conjunction with electrical stimulation in showing functional pathways between nodes in behavior-specific cortical networks. Thus, long-train stimulation is effective in evoking ethologically relevant sequences of movements by activating nodes in a cortical network for a behaviorally relevant period rather than spreading activation in a nonspecific manner.

[1]  Anna W Roe,et al.  Optical imaging of contrast response in Macaque monkey V1 and V2. , 2007, Cerebral cortex.

[2]  Iwona Stepniewska,et al.  Organization of the posterior parietal cortex in galagos: II. Ipsilateral cortical connections of physiologically identified zones within anterior sensorimotor region , 2009, The Journal of comparative neurology.

[3]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[4]  Mark Augath,et al.  BOLD sensitivity to cortical activation induced by microstimulation: comparison to visual stimulation. , 2007, Magnetic resonance imaging.

[5]  C. G. Phillips,et al.  Mapping by microstimulation of overlapping projections from area 4 to motor units of the baboon’s hand , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  J. Kaas,et al.  Architectionis, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys , 1993, The Journal of comparative neurology.

[7]  Peter L. Strick,et al.  Multiple representation in the primate motor cortex , 1978, Brain Research.

[8]  N. P. Bichot,et al.  Converging evidence from microstimulation, architecture, and connections for multiple motor areas in the frontal and cingulate cortex of prosimian primates , 2000, The Journal of comparative neurology.

[9]  Iwona Stepniewska,et al.  Organization of the posterior parietal cortex in galagos: I. Functional zones identified by microstimulation , 2009, The Journal of comparative neurology.

[10]  J. Pettigrew,et al.  Spontaneous and stimulus-evoked intrinsic optical signals in primary auditory cortex of the cat. , 2001, Journal of neurophysiology.

[11]  E. J. Tehovnik,et al.  Direct and indirect activation of cortical neurons by electrical microstimulation. , 2006, Journal of neurophysiology.

[12]  Iwona Stepniewska,et al.  Thalamocortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in New World monkeys. , 2010, Cerebral cortex.

[13]  A. Arnold,et al.  Further study on the excitation of pyramidal tract cells by intracortical microstimulation , 1976, Experimental Brain Research.

[14]  C. Capaday The Integrated Nature of Motor Cortical Function , 2004, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[15]  J. Kaas,et al.  The Organization and Evolution of Dorsal Stream Multisensory Motor Pathways in Primates , 2011, Front. Neuroanat..

[16]  R. LaMotte,et al.  Fine-scale organization of SI (area 3b) in the squirrel monkey revealed with intrinsic optical imaging. , 2001, Journal of neurophysiology.

[17]  N. Logothetis,et al.  The effects of electrical microstimulation on cortical signal propagation , 2010, Nature Neuroscience.

[18]  E. J. Tehovnik,et al.  Mapping Cortical Activity Elicited with Electrical Microstimulation Using fMRI in the Macaque , 2005, Neuron.

[19]  M. Graziano,et al.  Complex Movements Evoked by Microstimulation of Precentral Cortex , 2002, Neuron.

[20]  C. Darian‐Smith,et al.  Thalamic projections to sensorimotor cortex in the macaque monkey: Use of multiple retrograde fluorescent tracers , 1990, The Journal of comparative neurology.

[21]  G. Rizzolatti,et al.  Parietal cortex: from sight to action , 1997, Current Opinion in Neurobiology.

[22]  W. D. Thompson,et al.  Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. , 1968, Journal of neurophysiology.

[23]  Iwona Stepniewska,et al.  Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[25]  J. Kaas,et al.  Movement representation in the dorsal and ventral premotor areas of owl monkeys: A microstimulation study , 1996, The Journal of comparative neurology.

[26]  P. Strick,et al.  Basal ganglia and cerebellar loops: motor and cognitive circuits , 2000, Brain Research Reviews.

[27]  C. Sherrington,et al.  OBSERVATIONS ON THE EXCITABLE CORTEX OF THE CHIMPANZEE, ORANG‐UTAN, AND GORILLA , 1917 .

[28]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[29]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[30]  Dylan F. Cooke,et al.  Sensorimotor integration in the precentral gyrus: polysensory neurons and defensive movements. , 2004, Journal of neurophysiology.

[31]  R. Andersen,et al.  Evidence for the lateral intraparietal area as the parietal eye field , 1992, Current Opinion in Neurobiology.

[32]  Y. Amit,et al.  Encoding of Movement Fragments in the Motor Cortex , 2007, The Journal of Neuroscience.

[33]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[34]  R. Andersen,et al.  The posterior parietal cortex: Sensorimotor interface for the planning and online control of visually guided movements , 2006, Neuropsychologia.

[35]  Dylan F. Cooke,et al.  The Cortical Control of Movement Revisited , 2002, Neuron.

[36]  Iwona Stepniewska,et al.  Ipsilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otolemur garnetti , 2005, The Journal of comparative neurology.

[37]  Emilio Bizzi,et al.  Modular organization of motor behavior in the frog's spinal cord , 1995, Trends in Neurosciences.

[38]  G. Luppino,et al.  Parietofrontal Circuits for Action and Space Perception in the Macaque Monkey , 2001, NeuroImage.

[39]  R. Reid,et al.  Direct Activation of Sparse, Distributed Populations of Cortical Neurons by Electrical Microstimulation , 2009, Neuron.

[40]  Tirin Moore,et al.  Complex movements evoked by microstimulation of the ventral intraparietal area , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. Murata,et al.  Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4) , 1999, Experimental Brain Research.

[42]  Peter L. Strick,et al.  Stimulating research on motor cortex , 2002, Nature Neuroscience.

[43]  A. Berrebi,et al.  Connections of the Superior Paraolivary Nucleus of the Rat: II. Reciprocal Connections with the Tectal Longitudinal Column , 2010, Front. Neuroanat..

[44]  E Jankowska,et al.  The mode of activation of pyramidal tract cells by intracortical stimuli. , 1975, The Journal of physiology.

[45]  Dottie M. Clower,et al.  Basal ganglia and cerebellar inputs to 'AIP'. , 2005, Cerebral cortex.

[46]  M. Graziano The organization of behavioral repertoire in motor cortex. , 2006, Annual review of neuroscience.

[47]  G. Rizzolatti,et al.  The organization of the cortical motor system: new concepts. , 1998, Electroencephalography and clinical neurophysiology.