Minimum distance estimators of the Pickands dependence function and related tests of multivariate extreme-value dependence

We consider the problem of estimating the Pickands dependence function corresponding to a multivariate extreme-value distribution. A minimum distance estimator is proposed which is based on an $L^2$-distance between the logarithms of the empirical and the unknown extreme-value copula. The minimizer can be expressed explicitly as a linear functional of the logarithm of the empirical copula and weak convergence of the corresponding process on the simplex is proved. In contrast to other procedures which have recently been proposed in the literature for the nonparametric estimation of a multivariate Pickands dependence function (see [Zhang et al., 2008] and [Gudendorf and Segers, 2011]), the estimators constructed in this paper do not require knowledge of the marginal distributions and are an alternative to the method which has recently been suggested in [Gudendorf and Segers, 2012]. Moreover, the minimum distance approach allows the construction of a simple test for the hypothesis of a multivariate extreme-value copula, which is consistent against a broad class of alternatives. The finite-sample properties of the estimator and a multiplier bootstrap version of the test are investigated by means of a simulation study.

[1]  Christian Genest,et al.  A goodness-of-fit test for bivariate extreme-value copulas , 2011, 1102.2078.

[2]  Jun Yan,et al.  Nonparametric rank-based tests of bivariate extreme-value dependence , 2010, J. Multivar. Anal..

[3]  Christian Genest,et al.  On the Ghoudi, Khoudraji, and Rivest test for extreme‐value dependence , 2009 .

[4]  J. Segers Non-Parametric Inference for Bivariate Extreme-Value Copulas , 2004 .

[5]  M. Kosorok Introduction to Empirical Processes and Semiparametric Inference , 2008 .

[6]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[7]  T. Hsing Extreme value theory for multivariate stationary sequences , 1989 .

[8]  Olivier Scaillet,et al.  Testing for Equality between Two Copulas , 2006, J. Multivar. Anal..

[9]  Projection estimators of Pickands dependence functions , 2008 .

[10]  Nonparametric Estimation of the Dependence Function in Bivariate Extreme Value Distributions , 2001 .

[11]  H. Joe Multivariate extreme value distributions , 1997 .

[12]  Christian Genest,et al.  A nonparametric estimation procedure for bivariate extreme value copulas , 1997 .

[13]  Johan Segers,et al.  Nonparametric estimation of multivariate extreme-value copulas , 2011, 1107.2410.

[14]  J. Segers Asymptotics of empirical copula processes under non-restrictive smoothness assumptions , 2010, 1012.2133.

[15]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[16]  Ludger Rüschendorf,et al.  Asymptotic Distributions of Multivariate Rank Order Statistics , 1976 .

[17]  Jonathan A. Tawn,et al.  Bivariate extreme value theory: Models and estimation , 1988 .

[18]  J. Tawn Modelling multivariate extreme value distributions , 1990 .

[19]  Holger Dette,et al.  A note on bootstrap approximations for the empirical copula process , 2010 .

[20]  Jean-François Quessy,et al.  Testing for Bivariate Extreme Dependence Using Kendall's Process , 2012 .

[21]  Probabilistic Aspects of Multivariate Extremes , 1984 .

[22]  Jean-David Fermanian,et al.  An empirical central limit theorem with applications to copulas under weak dependence , 2009 .

[23]  Sheng Yue,et al.  The Gumbel logistic model for representing a multivariate storm event , 2000 .

[24]  Liang Peng,et al.  Nonparametric estimation of the dependence function for a multivariate extreme value distribution , 2008 .

[25]  J. Nešlehová,et al.  A moment-based test for extreme-value dependence , 2013 .

[26]  Paul Deheuvels,et al.  On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions , 1991 .

[27]  H. Dette,et al.  New estimators of the Pickands dependence function and a test for extreme-value dependence , 2011, 1102.0405.

[28]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[29]  P. Hall,et al.  Distribution and dependence-function estimation for bivariate extreme-value distributions , 2000 .

[30]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[31]  J. Segers,et al.  RANK-BASED INFERENCE FOR BIVARIATE EXTREME-VALUE COPULAS , 2007, 0707.4098.

[32]  A. Stephenson Simulating Multivariate Extreme Value Distributions of Logistic Type , 2003 .

[33]  Stanislav Volgushev,et al.  Empirical and sequential empirical copula processes under serial dependence , 2011, J. Multivar. Anal..

[34]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[35]  M. E. Johnson,et al.  Generalized Burr-Pareto-Logistic distributions with applications to a uranium exploration data set , 1986 .

[36]  Janet E. Heffernan,et al.  Dependence Measures for Extreme Value Analyses , 1999 .

[37]  Martin Ruppert,et al.  Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique , 2012, J. Multivar. Anal..

[38]  Johan Segers,et al.  Large-sample tests of extreme-value dependence for multivariate copulas , 2011 .

[39]  Johan Segers,et al.  Nonparametric estimation of an extreme-value copula in arbitrary dimensions , 2009, J. Multivar. Anal..

[40]  Michel Denuit,et al.  Analysis of bivariate tail dependence using extreme value copulas: An application to the SOA medical large claims database , 2003 .

[41]  Jane-ling Wang Asymptotically Minimax Estimators for Distributions with Increasing Failure Rate , 1986 .

[42]  Kilani Ghoudi,et al.  Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles , 1998 .

[43]  Jun Yan,et al.  Modeling Multivariate Distributions with Continuous Margins Using the copula R Package , 2010 .

[44]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .