Syntheses of monodispersed SnO2 and CeO2 nanoparticles through the self-capping role of 2-ethylhexanoate ligands

Monodispersed 2.4 nm-sized SnO2 and 2.6 nm-sized CeO2 nanoparticles have been reproducibly formed through a non-hydrolytic solvothermal reaction with 2-ethylhexanoate complexes, without the addition of extra surfactants. During the synthesis, the dissociated 2-ethylhexanoates from the central metals work as a capping agent, and this induces size control of the nanoparticles and the suppression of interparticular aggregation. The as-prepared nanoparticles are soluble in a non-polar solvents, and by converting the capping group to a citrate, they also form transparent suspensions in an aqueous solution. The as-synthesized SnO2 nanoparticles are of the pure cassiterite structure, while those of the CeO2 are of the calcium fluoride structure. X-Ray photoelectron spectroscopy (XPS) analysis indicates that the oxidation state of the Sn and Ce are close to +4. The band gaps of SnO2 and CeO2 nanoparticles are 4.14 and 3.68 eV, respectively, which are relatively large values because of the quantum size effect.

[1]  H. Deng,et al.  Synthesis of Tin Oxide Nanocrystalline Phases Via Use of Tin (II) Halide Precursors , 2003 .

[2]  T. Hyeon,et al.  Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals , 2004 .

[3]  N. Koshizaki,et al.  Synthesis of Ultrafine SnO2-x Nanocrystals by Pulsed Laser-Induced Reactive Quenching in Liquid Medium , 2003 .

[4]  Soumen Das,et al.  Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process , 2006 .

[5]  Monica Galeotti,et al.  Synthesis of Cu3Au nanocluster alloy in reverse micelles , 1996 .

[6]  Pietro Siciliano,et al.  Synthesis of SnO2 and ZnO Colloidal Nanocrystals from the Decomposition of Tin(II) 2-Ethylhexanoate and Zinc(II) 2-Ethylhexanoate , 2005 .

[7]  T. Hyeon,et al.  Monodisperse Nanoparticles of Ni and NiO: Synthesis, Characterization, Self‐Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction , 2005 .

[8]  G. Cheng,et al.  Controlled synthesis of CeO2 nanoparticles from the coupling route of homogenous precipitation with microemulsion , 2003 .

[9]  G. Adachi,et al.  Characterization of Cerium(IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles , 1997 .

[10]  M. Antonietti,et al.  Non‐aqueous Synthesis of Tin Oxide Nanocrystals and Their Assembly into Ordered Porous Mesostructures , 2005 .

[11]  T. Hirai,et al.  Preparation of Semiconductor Nanoparticle−Polymer Composites by Direct Reverse Micelle Polymerization Using Polymerizable Surfactants , 2000 .

[12]  J. Cheon,et al.  Architectural control of magnetic semiconductor nanocrystals. , 2002, Journal of the American Chemical Society.

[13]  M. Aegerter,et al.  Ultrafiltration conducting membranes and coatings from redispersable, nanoscaled, crystalline SnO2:Sb particles , 1999 .

[14]  A. Gedanken,et al.  Olympic Ring Formation from Newly Prepared Barium Hexaferrite Nanoparticle Suspension , 1999 .

[15]  T. R. Wilshaw,et al.  Deformation and fracture of synthetic α-quartz , 1973 .

[16]  G. A. Shafeev,et al.  A comparative study of partial reduction of ceria via laser ablation in air and soft chemical route , 1997 .

[17]  H. Cachet,et al.  Tin dioxide thin films prepared from a new alkoxyfluorotin complex including a covalent SnF bond , 2001 .

[18]  I. Lisiecki Size, shape, and structural control of metallic nanocrystals. , 2005, The journal of physical chemistry. B.

[19]  Jimmy C. Yu,et al.  Morphology-Controllable Synthesis of Mesoporous CeO2 Nano- and Microstructures , 2005 .

[20]  U. Graham,et al.  Low-Temperature Water-Gas Shift: In-Situ DRIFTS−Reaction Study of a Pt/CeO2 Catalyst for Fuel Cell Reformer Applications , 2003 .

[21]  M. Pileni II-VI semiconductors made by soft chemistry syntheses and optical properties , 2000 .

[22]  D. Aurbach,et al.  Sonochemical Synthesis of SnO2 Nanoparticles and Their Preliminary Study as Li Insertion Electrodes , 2000 .

[23]  Deren Yang,et al.  A simple hydrothermal route for synthesizing SnO2 quantum dots , 2006 .

[24]  A. Zaban,et al.  Controlling the Particle Size of Calcined SnO2 Nanocrystals , 2001 .

[25]  D. Yuan,et al.  Photoluminescence Properties of SnO 2 Nanoparticles Synthesized by Sol−Gel Method , 2004 .

[26]  F. Wu,et al.  CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst. , 2005, The journal of physical chemistry. B.

[27]  M. Asadullah,et al.  Catalyst Performance of Rh/CeO 2 /SiO 2 in the Pyrogasification of Biomass , 2003 .

[28]  M. Niederberger,et al.  Nonaqueous and surfactant-free synthesis routes to metal oxide nanoparticles , 2006 .

[29]  Taeghwan Hyeon,et al.  Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. , 2001, Journal of the American Chemical Society.

[30]  Edson R. Leite,et al.  Study of Synthesis Variables in the Nanocrystal Growth Behavior of Tin Oxide Processed by Controlled Hydrolysis , 2004 .

[31]  N. Kotov,et al.  Conformation of Ethylhexanoate Stabilizer on the Surface of CdS Nanoparticles , 1999 .

[32]  T. Hyeon,et al.  Synthesis of monodisperse chromium nanoparticles from the thermolysis of a Fischer carbene complex. , 2005, Chemical communications.

[33]  S. Govindarajan,et al.  New trivalent lanthanide complexes of phthalate-containing hydrazinium cation — preparation, and spectral and thermal studies , 1996 .

[34]  G. Stucky,et al.  Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. , 2002, Journal of the American Chemical Society.

[35]  B. Sivasankar,et al.  Hydrazine mixed metal malonates : new precursors for metal cobaltites , 1996 .

[36]  A. Kasuya,et al.  Blue shift in ultraviolet absorption spectra of monodisperse CeO2−x nanoparticles , 2000 .

[37]  Hideaki Inaba,et al.  Ceria-based solid electrolytes , 1996 .

[38]  M. Pileni,et al.  Synthesis of cadmium sulfide in situ in reverse micelles. 2. Influence of the interface on the growth of the particles , 1990 .

[39]  Leif O. Brown,et al.  Controlled Growth of Gold Nanoparticles during Ligand Exchange , 1999 .

[40]  J. A. Varella,et al.  Preparation and Characterization of a Dip‐Coated SnO2 Film for Transparent Electrodes for Transmissive Electrochromic Devices , 1993 .

[41]  M. Antonietti,et al.  Nonaqueous synthesis of crystalline anatase nanoparticles in simple ketones and aldehydes as oxygen-supplying agents. , 2005, Chemical communications.

[42]  M. Pileni,et al.  Nanosized Particles Made in Colloidal Assemblies , 1997 .

[43]  Ya-Wen Zhang,et al.  Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. , 2005, The journal of physical chemistry. B.

[44]  S. G. Ansari,et al.  Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles , 1997 .

[45]  G. Neri,et al.  Non-aqueous routes to crystalline metal oxide nanoparticles: Formation mechanisms and applications , 2005 .

[46]  F. Decker,et al.  Use of XPS for the study of cerium–vanadium (electrochromic) mixed oxides , 2001 .

[47]  O. Varghese,et al.  Electrode-sample capacitance effect on Ethanol sensitivity of nano-grained SnO2 thin films , 1998 .

[48]  Won Seok Seo,et al.  Preparation and Optical Properties of Highly Crystalline, Colloidal, and Size‐Controlled Indium Oxide Nanoparticles , 2003 .

[49]  K. Chopra,et al.  Transparent conductors—A status review , 1983 .

[50]  Hyun-Chul Choi,et al.  Investigation of the Structural and Electrochemical Properties of Size-Controlled SnO2 Nanoparticles , 2004 .

[51]  Taeghwan Hyeon,et al.  Synthesis of Monodisperse Palladium Nanoparticles , 2003 .