A comparative study of hydrothermally derived Mn, Fe, Co, Ni, Cu and Zn doped ceria nanocatalysts

[1]  S. Biring,et al.  Oxygen and cerium defects mediated changes in structural, optical and photoluminescence properties of Ni substituted CeO2 , 2019, Journal of Alloys and Compounds.

[2]  H. J. Kim,et al.  Rational Design of Transition Metal Co‐Doped Ceria Catalysts for Low‐Temperature CO Oxidation , 2019, ChemCatChem.

[3]  Yuhai Sun,et al.  Plasma-Assisted Surface Interactions of Pt/CeO2 Catalyst for Enhanced Toluene Catalytic Oxidation , 2018, Catalysts.

[4]  W. Self,et al.  Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications , 2018, Antioxidants.

[5]  K. Cychosz,et al.  Characterization of Micro / Mesoporous Materials by Physisorption : Concepts and Case Studies , 2018 .

[6]  David C. Joy,et al.  Scanning Electron Microscopy and X-Ray Microanalysis , 2017 .

[7]  K. Reddy Aliovalent Metal Ion Doped Ceria Catalysts for CO and Soot Oxidation , 2017 .

[8]  S. Kurajica,et al.  A Comparative Study of Toluene Oxidation on Different Metal Oxides , 2017 .

[9]  S. Kurajica,et al.  Catalytic oxidation of toluene on hydrothermally prepared ceria nanocrystals , 2017 .

[10]  S. Kurajica,et al.  High Surface Area Ceria Nanoparticles via Hydrothermal Synthesis Experiment Design , 2016 .

[11]  M. Labaki,et al.  A comparative study of Cu, Ag and Au doped CeO2 in the total oxidation of volatile organic compounds (VOCs) , 2016 .

[12]  Matteo Monai,et al.  Fundamentals and Catalytic Applications of CeO2-Based Materials. , 2016, Chemical reviews.

[13]  J. Zhao,et al.  Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation , 2016, Scientific Reports.

[14]  V. Ramasamy,et al.  Synthesis, characterization and tuning of visible region absorption ability of cadmium doped ceria quantum dots , 2016, Journal of Materials Science: Materials in Electronics.

[15]  Xiao-juan Zhang,et al.  Flower-Like Mn-Doped CeO2 Microstructures: Synthesis, Characterizations, and Catalytic Properties , 2015 .

[16]  Shi-ze Yang,et al.  Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons , 2015, Nature Communications.

[17]  E. Longo,et al.  Photoluminescence properties of cerium oxide nanoparticles as a function of lanthanum content , 2015 .

[18]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[19]  X. Xing,et al.  Controlled synthesis and properties of porous Cu/CeO2 microspheres , 2015 .

[20]  G. Yin,et al.  Nickel-doped ceria nanoparticles for promoting catalytic activity of Pt/C for ethanol electrooxidation , 2014 .

[21]  Ziyu Wu,et al.  Peculiar surface-interface properties of nanocrystalline ceria-cobalt oxides with enhanced oxygen storage capacity. , 2014, Physical chemistry chemical physics : PCCP.

[22]  P. Fornasiero,et al.  The role of ceria-based nanostructured materials in energy applications , 2014 .

[23]  Jingjing Wei,et al.  Copper doped ceria nanospheres: surface defects promoted catalytic activity and a versatile approach , 2014 .

[24]  S. C. Gadkari,et al.  Effect of size and aspect ratio on structural parameters and evidence of shape transition in zinc oxide nanostructures , 2013, 1308.1542.

[25]  S. Pinitsoontorn,et al.  Structure and Magnetic Properties of Monodisperse Fe3+-doped CeO2 Nanospheres , 2013 .

[26]  Chaochao Fu,et al.  Is there lattice contraction in multicomponent metal oxides? Case study for GdVO4:Eu3+ nanoparticles , 2013, Nanotechnology.

[27]  Y. Lv,et al.  Facile preparation of Mn-doped CeO2 Submicrorods by composite-hydroxide-salt-mediated approach and their magnetic property , 2013 .

[28]  Hong Li,et al.  Effect of Ni doping on the catalytic properties of nanostructured peony-like CeO2 , 2013 .

[29]  Masahiro Yoshimura,et al.  Handbook of hydrothermal technology , 2013 .

[30]  D. Muthuraj,et al.  Synthesis and characterization of CeO2 nanocrystals by solvothermal route , 2013 .

[31]  T. García,et al.  Oxygen defects: The key parameter controlling the activity and selectivity of mesoporous copper-doped ceria for the total oxidation of naphthalene , 2012 .

[32]  D. Mangalaraj,et al.  Enhanced photocatalytic activity of cobalt-doped CeO2 nanorods , 2012, Journal of Sol-Gel Science and Technology.

[33]  Weijun Yu,et al.  Cu-doped CeO2 spheres: Synthesis, characterization, and catalytic activity , 2012 .

[34]  Liquan Chen,et al.  Nanostructured ceria-based materials: synthesis, properties, and applications , 2012 .

[35]  P. Ágoston,et al.  Size-dependent lattice expansion in nanoparticles: reality or anomaly? , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[36]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[37]  Shuhong Yu,et al.  Cobalt-doping-induced synthesis of ceria nanodisks and their significantly enhanced catalytic activity. , 2012, Small.

[38]  H. Tan,et al.  Hydrothermal Synthesis of CeO2 Nanocrystals: Ostwald Ripening or Oriented Attachment? , 2012 .

[39]  M. Flytzani-Stephanopoulos,et al.  Structure Sensitivity of the Low-temperature Water-gas Shift Reaction on Cu–CeO2 catalysts , 2012 .

[40]  M. Centeno,et al.  Structural and catalytic properties of lanthanide (La, Eu, Gd) doped ceria , 2011 .

[41]  M. Molenda,et al.  Optimization of Cu doped ceria nanoparticles as catalysts for low-temperature methanol and ethylene total oxidation , 2011 .

[42]  E. Fatehifar,et al.  Synthesis and Physicochemical Characterization of Nanostructured Pt/CeO2 Catalyst Used for Total Oxidation of Toluene , 2011 .

[43]  Martin Vickers,et al.  High-throughput continuous hydrothermal flow synthesis of Zn–Ce oxides: unprecedented solubility of Zn in the nanoparticle fluorite lattice , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  Y. Hakuta,et al.  Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water , 2010, Materials.

[45]  S. Nam,et al.  Selective oxidation of carbon monoxide over CuO–CeO2 catalyst: Effect of hydrothermal treatment , 2008 .

[46]  Liyi Shi,et al.  CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods , 2008 .

[47]  S. Maensiri,et al.  Egg White Synthesis and Photoluminescence of Platelike Clusters of CeO2 Nanoparticles , 2007 .

[48]  X. Ni,et al.  Size-controlled synthesis and electrochemical characterization of spherical CeO2 crystallites. , 2007, Journal of colloid and interface science.

[49]  Zhong Lin Wang,et al.  Direct synthesis and structure characterization of ultrafine CeO2 nanoparticles , 2006 .

[50]  G. Avgouropoulos,et al.  Influence of the preparation method on the performance of CuO?CeO catalysts for the selective oxidation of CO , 2005 .

[51]  M. Greenblatt,et al.  Hydrothermal synthesis and properties of Ce1−xLaxO2−δ solid solutions , 1999 .

[52]  M. Flytzani-Stephanopoulos,et al.  Cu- and Ag-Modified Cerium Oxide Catalysts for Methane Oxidation , 1998 .

[53]  Tim Holland,et al.  Unit cell refinement from powder diffraction data: the use of regression diagnostics , 1997, Mineralogical Magazine.

[54]  N. Nachtrieb,et al.  Principles of Modern Chemistry , 1986 .

[55]  L. Alexander,et al.  X-ray diffraction procedures , 1954 .