The Effect of Chevrons on Crackle: Engine and Scale Model Results
暂无分享,去创建一个
GE and the USN continue to work together to find and develop practical techniques to reduce jet noise on tactical aircraft such as the F/A-18 E/F/G. Noise is an important issue for the Navy because of the harsh acoustic environment induced during operations of these aircraft on aircraft carriers and the impact to communities around Naval Air Bases and training sites. The noise generated by these systems is predominantly the noise generated by the exhaust plume due to the low bypass ratio of the engine and very high exhaust jet velocities. The main components of this jet noise are the jet mixing, shock and crackle noise. The present paper reports on progress, following Reference [1] with the F/A-18 E/F/G jet noise reduction program, which is currently focused on the USN near term goal of up to 3 dB reduction in the peak directivity direction. This goal also includes the reduction of the shock and crackle noise components. These goals are currently being pursued with nozzle plume mixing enhancement employing mechanical chevrons. These chevrons can be incorporated in the production version as a redesign of the F414 nozzle seals and do not involve the introduction of additional parts to the nozzle. This paper focuses on the effect of chevrons on the crackle noise component both in full scale on the F404 engine, and in small scale on the F414 engine nozzle in the twin configuration. The paper aims to make the case that this effect, which was first observed during ground engine testing of prototype chevrons, is a beneficial one in reducing/eliminating crackle which continues to be prevalent in high performance tactical aircraft engines today.Copyright © 2011 by ASME