Estimation of Quality Factor Q From the Instantaneous Frequency at the Envelope Peak of a Seismic Signal

In this paper, we derive an approximate equation combining the quality factor Q, the travel time of a wave, and the variation of the instantaneous frequency (IF) at the envelope peaks of two successive seismic wavelets, along the wave-propagating direction, based on the theory of one-way wave propagation in a 1D viscoelastic medium. We then propose a method (called the WEPIF method) to estimate Q by measuring the variations of the wavelet envelope peak IF (WEPIF) with the travel time of seismic wavelet. For zero-offset VSP data and poststack seismic data, we describe how to implement the WEPIF method in detail. A test on synthetic VSP data shows that the WEPIF method is less sensitive to interference from the reflector than the logarithm spectral ratio and the centroid frequency shift methods. Applied to field VSP data, the WEPIF method gives a Q-curve with nearly the same distribution as the results from a known well. Applied to poststack seismic data, it produces a Q-profile that indicates an intense absorption zone corresponding to the excellent gas-bearing reservoir. This allows us to predict a potential high-productivity gas well. Drilling confirmed this prediction. The WEPIF method can be applied to poststack seismic data and zero-offset VSP data.

[1]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[2]  Frank D. Stacey,et al.  Anelastic degradation of acoustic pulses in rock , 1974 .

[3]  R. Tonn,et al.  THE DETERMINATION OF THE SEISMIC QUALITY FACTOR Q FROM VSP DATA: A COMPARISON OF DIFFERENT COMPUTATIONAL METHODS1 , 1991 .

[4]  Tadeusz J. Ulrych,et al.  Estimation of quality factors from CMP records , 2002 .

[5]  Jinghuai Gao,et al.  On the Method of Quality Factors Estimation from Zero‐offset VSP Data , 2007 .

[6]  D. C. Ganley,et al.  A method for calculating synthetic seismograms which include the effects of absorption and dispersion , 1981 .

[7]  M. B. Widess HOW THIN IS A THIN BED , 1973 .

[8]  A. Walden,et al.  PRINCIPLES AND APPLICATION OF MAXIMUM KURTOSIS PHASE ESTIMATION1 , 1988 .

[9]  A. Barnes,et al.  Instantaneous frequency and amplitude at the envelope peak of a constant-phase wavelet , 1991 .

[10]  M. N. Toksöz,et al.  Space-time migration of earthquakes along the North Anatolian fault zone and seismic gaps , 1979 .

[11]  S. Mallat II – Fourier kingdom , 1999 .

[12]  Youli Quan,et al.  Seismic attenuation tomography using the frequency shift method , 1997 .

[13]  A. L. Frisillo,et al.  Effect of partial gas/brine saturation on ultrasonic absorption in sandstone , 1980 .

[14]  S. Mallat A wavelet tour of signal processing , 1998 .

[15]  N. Ricker The Form and Laws of Propagation of Seismic Wavelets , 1951 .

[16]  Xiaolong Dong,et al.  Instantaneous parameters extraction via wavelet transform , 1999, IEEE Trans. Geosci. Remote. Sens..

[17]  J. D. Robertson,et al.  Complex seismic trace analysis of thin beds , 1984 .

[18]  Yanghua Wang,et al.  Seismic Inverse Q Filtering , 2008 .

[19]  A. Barnes Instantaneous spectral bandwidth and dominant frequency with applications to seismic reflection data , 1993 .

[20]  Raghuveer M. Rao,et al.  Algorithms for designing wavelets to match a specified signal , 2000, IEEE Trans. Signal Process..

[21]  R. Lytle,et al.  Computerized geophysical tomography , 1979, Proceedings of the IEEE.

[22]  George A. McMechan,et al.  Tomographic imaging of velocity and Q, with application to crosswell seismic data from the Gypsy Pilot Site, Oklahoma , 1997 .

[23]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[24]  J. Rickett Integrated estimation of interval-attenuation profiles , 2006 .

[25]  P. S. Hauge,et al.  Measurements of attenuation from vertical seismic profiles , 1981 .

[26]  S. Shapiro,et al.  Viscoacoustic wave propagation in 2-D random media and separation of absorption and scattering attenuation , 1995 .

[27]  Clive McCann,et al.  Compressional‐wave Q estimation from full‐waveform sonic data , 2001 .

[28]  D. P. Blair,et al.  Attenuation of explosion‐generated pulse in rock masses , 1982 .

[29]  Matthew A. Brzostowski,et al.  3-D tomographic imaging of near‐surface seismic velocity and attenuation , 1992 .

[30]  Gao Jing Three parameter wavelet and its applications to seismic data processing , 2006 .

[31]  M. B. Dobrin Introduction to Geophysical Prospecting , 1976 .

[32]  M. Taner,et al.  Complex seismic trace analysis , 1979 .

[33]  Amos Nur,et al.  Seismic attenuation: Effects of pore fluids and frictional-sliding , 1982 .

[34]  L. Engelhard,et al.  Determination of Seismic‐Wave Attenuation By Complex Trace Analysis , 1996 .

[35]  Longyi Shao,et al.  Measures of scale based on the wavelet scalogram with applications to seismic attenuation , 2006 .

[36]  Yanghua Wang,et al.  Quantifying the effectiveness of stabilized inverse Q filtering , 2003 .

[37]  Jorge O. Parra,et al.  Improving Q estimates from seismic reflection data using well-log-based localized spectral correction , 2004 .

[38]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[39]  Walter I. Futterman,et al.  Dispersive body waves , 1962 .

[40]  M. B. Widess Quantifying resolving power of seismic systems , 1982 .

[41]  M. H. Worthington,et al.  Q estimation from vertical seismic profile data and anomalous variations in the central North Sea , 1985 .

[42]  Robert L. Nowack,et al.  Seismic attenuation values obtained from instantaneous‐frequency matching and spectral ratios , 1995 .

[43]  A. Ziolkowski,et al.  Why don't we measure seismic signatures? , 1991 .

[44]  C. Wright,et al.  A note on pulse broadening and anelastic attenuation in near-surface rocks , 1981 .

[45]  Jose Pujol,et al.  Elastic Wave Propagation and Generation in Seismology: Anelastic attenuation , 2003 .

[46]  N. Ricker THE FORM AND NATURE OF SEISMIC WAVES AND THE STRUCTURE OF SEISMOGRAMS , 1940 .

[47]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.