Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies

[1]  E. Zeggini,et al.  Leukemia-Associated Somatic Mutations Drive Distinct Patterns of Age-Related Clonal Hemopoiesis , 2015, Cell reports.

[2]  J. Cayuela,et al.  A CALR mutation preceding BCR-ABL1 in an atypical myeloproliferative neoplasm. , 2015, The New England journal of medicine.

[3]  M. McCarthy,et al.  Age-related clonal hematopoiesis associated with adverse outcomes. , 2014, The New England journal of medicine.

[4]  S. Gabriel,et al.  Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. , 2014, The New England journal of medicine.

[5]  S. Orkin,et al.  Myeloproliferative neoplasms can be initiated from a single hematopoietic stem cell expressing JAK2-V617F , 2014, The Journal of experimental medicine.

[6]  Joshua F. McMichael,et al.  Age-related cancer mutations associated with clonal hematopoietic expansion , 2014, Nature Medicine.

[7]  M. Cazzola,et al.  Common germline variation at the TERT locus contributes to familial clustering of myeloproliferative neoplasms , 2014, American journal of hematology.

[8]  N. Mizushima,et al.  Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells , 2014, Journal of Cell Science.

[9]  W. Vainchenker,et al.  Emergence of a BCR-ABL translocation in a patient with the JAK2V617F mutation: evidence for secondary acquisition of BCR-ABL in the JAK2V617F clone. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[10]  M. Cazzola,et al.  CALR exon 9 mutations are somatically acquired events in familial cases of essential thrombocythemia or primary myelofibrosis. , 2014, Blood.

[11]  Christian Beisel,et al.  Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. , 2014, Blood.

[12]  D. Bluteau,et al.  Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation. , 2014, The Journal of clinical investigation.

[13]  A Sigurdsson,et al.  The germline sequence variant rs2736100_C in TERT associates with myeloproliferative neoplasms , 2014, Leukemia.

[14]  S. Miyano,et al.  The landscape of somatic mutations in Down syndrome–related myeloid disorders , 2013, Nature Genetics.

[15]  P. Opolon,et al.  Heterozygous and Homozygous JAK2V617F States Modeled by Induced Pluripotent Stem Cells from Myeloproliferative Neoplasm Patients , 2013, PloS one.

[16]  A. Jones,et al.  Inherited predisposition to myeloproliferative neoplasms , 2013, Therapeutic advances in hematology.

[17]  P. Rohrlich,et al.  High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia. , 2013, Blood.

[18]  M. Warr,et al.  FoxO3a Directs a Protective Autophagy Program in Hematopoietic Stem Cells , 2013, Nature.

[19]  M. Labopin,et al.  Long term follow up of 93 families with myeloproliferative neoplasms: life expectancy and implications of JAK2V617F in the occurrence of complications. , 2012, Blood cells, molecules & diseases.

[20]  G. Daley,et al.  Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells , 2011, Proceedings of the National Academy of Sciences.

[21]  R. Hardison,et al.  Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells , 2012, Proceedings of the National Academy of Sciences.

[22]  R. Kralovics,et al.  Role of germline genetic factors in MPN pathogenesis. , 2012, Hematology/oncology clinics of North America.

[23]  R. Kuiper,et al.  Germline Copy Number Variation and Cancer Risk , 2012 .

[24]  P. Pearson,et al.  Germline copy number variations and cancer predisposition. , 2012, Future oncology.

[25]  D. Gilliland,et al.  Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms , 2011, Blood cancer journal.

[26]  M. Cazzola,et al.  Identification of genomic aberrations associated with disease transformation by means of high‐resolution SNP array analysis in patients with myeloproliferative neoplasm , 2011, American journal of hematology.

[27]  A. Simon,et al.  Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation , 2011, Autophagy.

[28]  Anna L. Brown,et al.  Heritable GATA2 Mutations Associated with Familial Myelodysplastic Syndrome and Acute Myeloid Leukemia , 2011, Nature Genetics.

[29]  M. Cazzola,et al.  Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. , 2011, Blood.

[30]  E. Kirkness,et al.  Somatic coding mutations in human induced pluripotent stem cells , 2011, Nature.

[31]  C. Bueso-Ramos,et al.  Trisomy 14 as a Sole Chromosome Abnormality Is Associated with Older Age, a Heterogenous Group of Myeloid Neoplasms with Dysplasia, and a Wide Spectrum of Disease Progression , 2011, Journal of biomedicine & biotechnology.

[32]  Wolfram Goessling,et al.  The Wnt/β-Catenin Pathway Is Required for the Development of Leukemia Stem Cells in AML , 2010, Science.

[33]  O. Abdel-Wahab,et al.  Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. , 2010, Cancer research.

[34]  S. Howng,et al.  GSKIP, an inhibitor of GSK3β, mediates the N‐cadherin/β‐catenin pool in the differentiation of SH‐SY5Y cells , 2009, Journal of cellular biochemistry.

[35]  R. Levine,et al.  Mutation in TET2 in myeloid cancers. , 2009, The New England journal of medicine.

[36]  W. Vainchenker,et al.  Analysis of the ten-eleven translocation 2 (TET2) gene in familial myeloproliferative neoplasms. , 2009, Blood.

[37]  W. Vainchenker,et al.  A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis. , 2009, Blood.

[38]  Ashot Harutyunyan,et al.  A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms , 2009, Nature Genetics.

[39]  N. Yoo,et al.  Frameshift mutations of autophagy‐related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability , 2009, The Journal of pathology.

[40]  Andrew Collins,et al.  JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms , 2009, Nature Genetics.

[41]  Kenneth Offit,et al.  A germline JAK2 SNP is associated with predisposition to the development of JAK2V617F-positive myeloproliferative neoplasms , 2009, Nature Genetics.

[42]  I. Weissman,et al.  Glycogen synthase kinase 3β missplicing contributes to leukemia stem cell generation , 2009, Proceedings of the National Academy of Sciences.

[43]  K. Kaushansky,et al.  Inhibition of GSK-3beta promotes survival and proliferation of megakaryocytic cells through a beta-catenin-independent pathway. , 2008, Cellular signalling.

[44]  W. Vainchenker,et al.  JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. , 2008, Blood.

[45]  P. Mali,et al.  Improved Efficiency and Pace of Generating Induced Pluripotent Stem Cells from Human Adult and Fetal Fibroblasts , 2008, Stem cells.

[46]  H. Nakauchi,et al.  Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. , 2008, Blood.

[47]  D. Woulfe,et al.  GSK3beta is a negative regulator of platelet function and thrombosis. , 2008, Blood.

[48]  P. Jégo,et al.  The JAK2V617F mutation may be present several years before the occurrence of overt myeloproliferative disorders , 2008, Leukemia.

[49]  B. Thiers Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2008 .

[50]  C. Bloomfield,et al.  Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. , 2007, Blood.

[51]  Chi-Ying F. Huang,et al.  GSKIP Is Homologous to the Axin GSK3β Interaction Domain and Functions as a Negative Regulator of GSK3β , 2006 .

[52]  G. Thomas,et al.  Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. , 2006, Blood.

[53]  Stefan N Constantinescu,et al.  A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. , 2005, Nature.

[54]  J. Thomson,et al.  Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. , 2005, Blood.

[55]  T. Lister,et al.  Mutation of CEBPA in familial acute myeloid leukemia. , 2004, The New England journal of medicine.

[56]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[57]  John M. Maris,et al.  Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia , 1999, Nature Genetics.

[58]  D. Horsman,et al.  Trisomy 14 is a non‐random karyotypic abnormality associated with myeloid malignancies , 1997, British journal of haematology.

[59]  W. Vainchenker,et al.  Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. , 1996, Blood.

[60]  M. Mancini,et al.  Trisomy 14 in hematologic diseases : another non-random abnormality within myeloid proliferative disorders , 1993 .

[61]  D. Catovsky,et al.  Trisomy 14 in atypical chronic myeloid leukemia. , 1990, Leukemia.

[62]  Prchal Jf,et al.  Letter: Bone-marrow responses in polycythemia vera. , 1974 .

[63]  A. Axelrad,et al.  Letter: Bone-marrow responses in polycythemia vera. , 1974, The New England journal of medicine.