暂无分享,去创建一个
[1] Sariel Har-Peled,et al. No, Coreset, No Cry , 2004, FSTTCS.
[2] David P. Woodruff,et al. Coresets and sketches for high dimensional subspace approximation problems , 2010, SODA '10.
[3] Santosh S. Vempala,et al. Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.
[4] Michael W. Mahoney. Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..
[5] Michael B. Cohen,et al. Dimensionality Reduction for k-Means Clustering and Low Rank Approximation , 2014, STOC.
[6] Michael W. Mahoney Boyd,et al. Randomized Algorithms for Matrices and Data , 2010 .
[7] Kasturi R. Varadarajan,et al. Geometric Approximation via Coresets , 2007 .
[8] Xin Xiao,et al. A near-linear algorithm for projective clustering integer points , 2012, SODA.
[9] Sariel Har-Peled,et al. On coresets for k-means and k-median clustering , 2004, STOC '04.
[10] Pankaj K. Agarwal,et al. Approximating extent measures of points , 2004, JACM.
[11] Dan Feldman,et al. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering , 2013, SODA.
[12] Michael Langberg,et al. A unified framework for approximating and clustering data , 2011, STOC.
[13] Santosh S. Vempala,et al. Matrix approximation and projective clustering via volume sampling , 2006, SODA '06.
[14] Amos Fiat,et al. Coresets forWeighted Facilities and Their Applications , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[15] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).