Recent developments in frequency domain multi-axial fatigue analysis

Abstract The purpose of this paper is to discuss the recent developments in multi-axial spectral methods, used for estimating fatigue damage of multi-axial random loadings from Power Spectral Density (PSD) data. The difference between time domain and frequency domain approaches in multi-axial fatigue is first addressed, the main advantages of frequency domain approach being pointed out. The paper then critically reviews some categories of multi-axial spectral methods: approaches based on uniaxial equivalent stress (strength criteria, “equivalent von Mises stress”, multi-axial rainflow counting), critical plane criteria (Matake, Carpinteri-Spagnoli, criterion based on resolved shear stress on critical plane), stress-invariants based criteria (Crossland, Sines, “Projection-by-Projection”). The “maximum variance” method and the Minimum Circumscribed Circle/Ellipse formulations defined in the frequency domain are also discussed. The paper critically analyses also non-proportional multi-axial loadings and the role of material fatigue parameters (e.g. S/N curves for bending/torsion) in relation to specific methods. The paper concludes with general comments on advantages and possible limitations in the use of multi-axial spectral methods, with special focus on the assumption of stationarity and Gaussianity in modelling multi-axial random loadings.

[1]  Thomas R. Chase,et al.  Multiaxial cycle counting for critical plane methods , 2003 .

[2]  C. Sonsino Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety , 2007 .

[3]  Rognon Herve,et al.  Comparison of Spectral Methods for Fatigue Analysis in Non-gaussian Random Processes – Application to Elastic-plastic Behaviour☆ , 2015 .

[4]  Denis Benasciutti,et al.  A frequency‐domain formulation of MCE method for multi‐axial random loadings , 2008 .

[5]  Luca Landi,et al.  Random Loads Fatigue: The Use of Spectral Methods Within Multibody Simulation , 2005 .

[6]  Luca Susmel A simple and efficient numerical algorithm to determine the orientation of the critical plane in multiaxial fatigue problems , 2010 .

[7]  Min Zhang,et al.  A novel hybrid frequency-time domain method for the fatigue damage assessment of offshore structures , 2015 .

[8]  Yi Sun,et al.  Fatigue life estimation under multiaxial random loading by means of the equivalent Lemaitre stress and multiaxial S–N curve methods , 2015 .

[9]  Denis Benasciutti,et al.  Some analytical expressions to measure the accuracy of the “equivalent von Mises stress” in vibration multiaxial fatigue , 2014 .

[10]  Tadeusz Łagoda,et al.  Comparison of the fatigue characteristics for some selected structural materials under bending and torsion , 2011 .

[11]  Denis Benasciutti,et al.  A novel engineering method based on the critical plane concept to estimate the lifetime of weldments subjected to variable amplitude multiaxial fatigue loading , 2009 .

[12]  Denis Benasciutti Fatigue analysis of random loadings: A frequency-domain approach , 2012 .

[14]  André Preumont,et al.  Spectral methods for multiaxial random fatigue analysis of metallic structures , 2000 .

[15]  K. Dreßler,et al.  MULTIAXIAL RAINFLOW: A Consequent Continuation of Professor Tatsuo Endo's Work , 1992 .

[16]  W. D. Mark,et al.  Random Vibration in Mechanical Systems , 1963 .

[17]  Turan Dirlik,et al.  Application of computers in fatigue analysis , 1985 .

[18]  Bathias There is no infinite fatigue life in metallic materials , 1999 .

[19]  Ewald Macha,et al.  Fatigue lives of 18G2A and 10HNAP steels under variable amplitude and random non-proportional bending with torsion loading , 2008 .

[20]  Jaime Domínguez,et al.  Effect of the loading spectrum and history length on fatigue life distribution under random loading , 1992 .

[21]  Francesco Frendo,et al.  Fatigue resistance of pipe-to-plate welded joint under in-phase and out-of-phase combined bending and torsion , 2015 .

[22]  Adam Niesłony,et al.  Fatigue life prediction for broad-band multiaxial loading with various PSD curve shapes , 2012 .

[23]  D. Benasciutti,et al.  Spectral methods for lifetime prediction under wide-band stationary random processes , 2005 .

[24]  André Preumont,et al.  Méthodes spectrales pour une analyse en fatigue des structures métalliques sous chargements aléatoires multiaxiaux , 2001 .

[25]  U. Kocabicak,et al.  A simple approach for multiaxial fatigue damage prediction based on FEM post-processing , 2004 .

[26]  I. Papadopoulos,et al.  Critical plane approaches in high-cycle fatigue : On the definition of the amplitude and mean value of the shear stress acting on the critical plane , 1998 .

[27]  Mirosław Mrzygłód,et al.  Numerial implementation of multiaxial high-cycle fatigue criterion to structural optimization , 2006 .

[28]  Luca Susmel,et al.  Multiaxial notch fatigue , 2009 .

[29]  Andrea Bernasconi,et al.  Efficiency of algorithms for shear stress amplitude calculation in critical plane class fatigue criteria , 2005 .

[30]  Denis Benasciutti,et al.  Basic Principles of Spectral Multi-axial Fatigue Analysis , 2015 .

[31]  J. Košút Quadratic damage rule in random loading case , 2004 .

[32]  André Preumont,et al.  On the peak factor of stationary Gaussian processes , 1985 .

[33]  Roberto Tovo,et al.  Analogies between spectral methods and multiaxial criteria in fatigue damage evaluation , 2013 .

[34]  Gary Marquis,et al.  State-of-the-art and future trends in multiaxial fatigue assessment , 2005 .

[35]  Andrea Carpinteri,et al.  Reformulation in the frequency domain of a critical plane-based multiaxial fatigue criterion , 2014 .

[36]  Andrea Carpinteri,et al.  Multiaxial high-cycle fatigue criterion for hard metals , 2001 .

[37]  M. RahmanM.,et al.  Finite element based vibration fatigue analysis of a new two-stroke linear generator engine component , 2007 .

[38]  Emmanuel Pagnacco,et al.  A probabilistic model for the fatigue reliability of structures under random loadings with phase shift effects , 2010 .

[39]  Adam Niesłony,et al.  Comparison of some selected multiaxial fatigue failure criteria dedicated for spectral method , 2010 .

[40]  Torgeir Moan,et al.  Frequency-domain fatigue analysis of wide-band stationary Gaussian processes using a trimodal spectral formulation , 2008 .

[41]  Denis Benasciutti,et al.  Cycle distribution and fatigue damage assessment in broad-band non-Gaussian random processes , 2005 .

[42]  Soon-Bok Lee,et al.  A critical review on multiaxial fatigue assessments of metals , 1996 .

[43]  Curtis E. Larsen,et al.  Predicting the fatigue life of offshore structures by the single-moment spectral method , 1991 .

[44]  Mauro Filippini,et al.  A comparative study of multiaxial high-cycle fatigue criteria for metals , 1997 .

[45]  E. Macha,et al.  Fatigue fracture plane under Multiaxial Random Loadings – prediction by variance of equivalent stress based on the maximum shear and normal stresses , 1992 .

[46]  Claudio Braccesi,et al.  Random multiaxial fatigue: A comparative analysis among selected frequency and time domain fatigue evaluation methods , 2015 .

[47]  Jian-Qiao Sun,et al.  Fatigue analysis of non-linear structures with von Mises stress , 2001 .

[48]  Adam Niesłony,et al.  Spectral Method in Multiaxial Random Fatigue , 2007 .

[49]  Claudio Braccesi,et al.  An equivalent uniaxial stress process for fatigue life estimation of mechanical components under multiaxial stress conditions , 2008 .

[50]  E. Macha,et al.  Fatigue life under biaxial stress state with different cross-correlation coefficients of normal stresses , 2012 .

[51]  André Preumont,et al.  TOOLS FOR A MULTIAXIAL FATIGUE ANALYSIS OF STRUCTURES SUBMITTED TO RANDOM VIBRATIONS , 1999 .

[52]  Denis Benasciutti,et al.  Fatigue damage assessment of a car body-in-white using a frequency-domain approach , 2007 .

[53]  Janko Slavič,et al.  Frequency-domain methods for a vibration-fatigue-life estimation – Application to real data , 2013 .

[54]  Andrea Bernasconi,et al.  Efficient algorithms for calculation of shear stress amplitude and amplitude of the second invariant of the stress deviator in fatigue criteria applications , 2002 .

[55]  Denis Benasciutti,et al.  “Projection-by-Projection” Approach: A Spectral Method for Multiaxial Random Fatigue , 2014 .

[56]  Werner Breuer,et al.  Fatigue assessment of vibrating rail vehicle bogie components under non-Gaussian random excitations using power spectral densities , 2013 .

[57]  Roberto Tovo,et al.  On fatigue damage assessment in bimodal random processes , 2007 .

[58]  Ja Bannantine,et al.  A Multiaxial Fatigue Life Estimation Technique , 1992 .

[59]  C.-C. Chu,et al.  Multiaxial fatigue life prediction method in the ground vehicle industry , 1997 .

[60]  Roberto Tovo,et al.  Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes , 2006 .

[61]  Jonas W. Ringsberg,et al.  Time-domain fatigue assessment of ship side-shell structures , 2013 .

[62]  Luca Susmel,et al.  A stress invariant based criterion to estimate fatigue damage under multiaxial loading , 2008 .

[64]  Giuliano Allegri,et al.  On the inverse power laws for accelerated random fatigue testing , 2008 .

[65]  Bin Li,et al.  A Procedure for Fast Evaluation of High-Cycle Fatigue Under Multiaxial Random Loading , 2002 .

[66]  A. Carpinteri,et al.  Structural integrity assessment of metallic components under multiaxial fatigue: the C–S criterion and its evolution , 2012 .

[67]  J. Grzelak,et al.  Spectral analysis of the criteria for multiaxial Random Fatigue , 1991 .

[68]  Francesco Frendo,et al.  Experimental investigation of the fatigue resistance of pipe-to-plate welded connections under bending, torsion and mixed mode loading , 2014 .

[69]  Roberto Tovo,et al.  A stress invariant based spectral method to estimate fatigue life under multiaxial random loading , 2011 .

[70]  Giovanni Petrucci A critical assessment of methods for the determination of the shear stress amplitude in multiaxial fatigue criteria belonging to critical plane class , 2015 .

[71]  Ali Fatemi,et al.  Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials , 1998 .

[72]  T Lagoda Influence of correlations between stresses on calculated fatigue life of machine elements , 1996 .

[73]  Denis Benasciutti,et al.  Fatigue life assessment in non-Gaussian random loadings , 2006 .

[74]  André Preumont,et al.  Random Vibration and Spectral Analysis , 2010 .

[75]  André Preumont,et al.  Spectral methods to estimate local multiaxial fatigue failure for structures undergoing random vibrations , 2001 .

[76]  Filippo Berto,et al.  Multi-axial fatigue behaviour of a severely notched carbon steel , 2006 .

[77]  C.-C. Chu,et al.  Fatigue analysis and the local stress–strain approach in complex vehicular structures , 1997 .

[78]  Chun H. Wang,et al.  Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue—Part 1: Theories , 1996 .

[79]  André Preumont,et al.  Predicting random high-cycle fatigue life with finite elements , 1994 .

[80]  Chun H. Wang,et al.  Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue—Part 2: Comparison With Experimental Results , 1996 .

[81]  Janko Slavič,et al.  Multiaxial vibration fatigue—A theoretical and experimental comparison , 2016 .

[82]  Roberto Tovo,et al.  Frequency‐based fatigue analysis of non‐stationary switching random loads , 2007 .

[83]  Claudio Braccesi,et al.  Random fatigue. A new frequency domain criterion for the damage evaluation of mechanical components , 2015 .

[84]  Claude Bathias,et al.  How and why the fatigue S–N curve does not approach a horizontal asymptote , 2001 .

[85]  B. Kenmeugne,et al.  Improvements of multiaxial fatigue criteria computation for a strong reduction of calculation duration , 1999 .

[86]  Roberto Tovo,et al.  On fatigue cycle distribution in non-stationary switching loadings with Markov chain structure , 2010 .

[87]  L. Susmel,et al.  A bi-parametric Wöhler curve for high cycle multiaxial fatigue assessment , 2002 .

[88]  Uncertainty of the sea state parameters resulting from the methods of spectral estimation , 1999 .

[89]  Curtis E. Larsen,et al.  Improved Spectral Method for Variable Amplitude Fatigue Prediction , 1990 .

[90]  C. Berger,et al.  Very high cycle fatigue – Is there a fatigue limit? , 2011 .

[91]  Ewald Macha,et al.  Fatigue life calculation by means of the cycle counting and spectral methods under multiaxial random loading , 2005 .