Soundness of Q-resolution with dependency schemes

Q-resolution and Q-term resolution are proof systems for quantified Boolean formulas (QBFs). We introduce generalizations of these proof systems named Q ( D ) -resolution and Q ( D ) -term resolution. Q ( D ) -resolution and Q ( D ) -term resolution are parameterized by a dependency scheme D and use more powerful ?-reduction and ?-reduction rules, respectively. We show soundness of these systems for particular dependency schemes: we prove (1) soundness of Q ( D ) -resolution parameterized by the reflexive resolution-path dependency scheme, and (2) soundness of Q ( D ) -term resolution parameterized by the resolution-path dependency scheme. These results entail soundness of the proof systems used for certificate generation in the state-of-the-art solver DepQBF.

[1]  Allen Van Gelder Variable Independence and Resolution Paths for Quantified Boolean Formulas , 2011, CP.

[2]  Per Bjesse,et al.  Finding Bugs in an Alpha Microprocessor Using Satisfiability Solvers , 2001, CAV.

[3]  Joao Marques-Silva,et al.  The Impact of Branching Heuristics in Propositional Satisfiability Algorithms , 1999, EPIA.

[4]  Marko Samer Variable Dependencies of Quantified CSPs , 2008, LPAR.

[5]  J. Reif,et al.  Lower bounds for multiplayer noncooperative games of incomplete information , 2001 .

[6]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[7]  Marco Schaerf,et al.  An Algorithm to Evaluate Quantified Boolean Formulae and Its Experimental Evaluation , 2002, Journal of Automated Reasoning.

[8]  Armin Biere,et al.  A survey of recent advances in SAT-based formal verification , 2005, International Journal on Software Tools for Technology Transfer.

[9]  Marko Samer,et al.  Backdoor Sets of Quantified Boolean Formulas , 2008, Journal of Automated Reasoning.

[10]  Jie-Hong Roland Jiang,et al.  Unified QBF certification and its applications , 2012, Formal Methods Syst. Des..

[11]  Fahiem Bacchus,et al.  A Uniform Approach for Generating Proofs and Strategies for Both True and False QBF Formulas , 2011, IJCAI.

[12]  Jie-Hong Roland Jiang,et al.  Henkin quantifiers and Boolean formulae: A certification perspective of DQBF , 2014, Theor. Comput. Sci..

[13]  At Linz,et al.  Dependency Schemes and Search-Based QBF Solving: Theory and Practice , 2012 .

[14]  Hans Kleine Büning,et al.  Resolution for Quantified Boolean Formulas , 1995, Inf. Comput..

[15]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[16]  Uwe Bubeck,et al.  Model-based transformations for quantified boolean formulas , 2010, DISKI.

[17]  Armin Biere,et al.  Integrating Dependency Schemes in Search-Based QBF Solvers , 2010, SAT.

[18]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[19]  Armando Tacchella,et al.  Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas , 2006, J. Artif. Intell. Res..

[20]  Mikolás Janota,et al.  On Unification of QBF Resolution-Based Calculi , 2014, MFCS.

[21]  Armin Biere,et al.  Resolution-Based Certificate Extraction for QBF - (Tool Presentation) , 2012, SAT.

[22]  Armin Biere,et al.  A Unified Proof System for QBF Preprocessing , 2014, IJCAR.

[23]  Stefan Szeider,et al.  Computing Resolution-Path Dependencies in Linear Time , , 2012, SAT.

[24]  Mikolás Janota,et al.  On Propositional QBF Expansions and Q-Resolution , 2013, SAT.