Transcriptomic and anatomic parcellation of 5-HT3AR expressing cortical interneuron subtypes revealed by single-cell RNA sequencing

Cortical GABAergic interneurons constitute a highly diverse population of inhibitory neurons that are key regulators of cortical microcircuit function. An important and heterogeneous group of cortical interneurons specifically expresses the serotonin receptor 3A (5-HT3AR) but how this diversity emerges during development is poorly understood. Here we use single-cell transcriptomics to identify gene expression patterns operating in Htr3a-GFP+ interneurons during early steps of cortical circuit assembly. We identify three main molecular types of Htr3a-GFP+ interneurons, each displaying distinct developmental dynamics of gene expression. The transcription factor Meis2 is specifically enriched in a type of Htr3a-GFP+ interneurons largely confined to the cortical white matter. These MEIS2-expressing interneurons appear to originate from a restricted region located at the embryonic pallial–subpallial boundary. Overall, this study identifies MEIS2 as a subclass-specific marker for 5-HT3AR-containing interstitial interneurons and demonstrates that the transcriptional and anatomical parcellation of cortical interneurons is developmentally coupled.

[1]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[2]  Theofanis Karayannis,et al.  Neuronal activity is required for the development of specific cortical interneuron subtypes , 2011, Nature.

[3]  S. Hockfield,et al.  The Divergent Homeobox Gene PBX1 Is Expressed in the Postnatal Subventricular Zone and Interneurons of the Olfactory Bulb , 1996, The Journal of Neuroscience.

[4]  Kazuto Kobayashi,et al.  ER81 and CaMKIV identify anatomically and phenotypically defined subsets of mouse olfactory bulb interneurons , 2007, The Journal of comparative neurology.

[5]  Pasko Rakic,et al.  Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon , 1980, Journal of neurocytology.

[6]  Y. You,et al.  The Production of Somatostatin Interneurons in the Olfactory Bulb Is Regulated by the Transcription Factor Sp8 , 2013, PloS one.

[7]  Julien Prados,et al.  Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex , 2016, Science.

[8]  J. D. Macklis,et al.  SOX6 controls dorsal-ventral progenitor parcellation and interneuron diversity during neocortical development , 2009, Nature Neuroscience.

[9]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[10]  O. Marín,et al.  The Embryonic Preoptic Area Is a Novel Source of Cortical GABAergic Interneurons , 2009, The Journal of Neuroscience.

[11]  S. Potter,et al.  The Zinc Finger Transcription Factor Sp8 Regulates the Generation and Diversity of Olfactory Bulb Interneurons , 2006, Neuron.

[12]  H. Monyer,et al.  5-HT3A Receptor-Bearing White Matter Interstitial GABAergic Interneurons Are Functionally Integrated into Cortical and Subcortical Networks , 2011, The Journal of Neuroscience.

[13]  H. Taniguchi,et al.  The Spatial and Temporal Origin of Chandelier Cells in Mouse Neocortex , 2013, Science.

[14]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[15]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[16]  G. Fishell,et al.  In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. , 2001, Development.

[17]  J. Rubenstein,et al.  A subpopulation of dorsal lateral/caudal ganglionic eminence-derived neocortical interneurons expresses the transcription factor Sp8. , 2012, Cerebral cortex.

[18]  G. Miyoshi,et al.  Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons , 2010, The Journal of Neuroscience.

[19]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[20]  T. Vitalis,et al.  New pool of cortical interneuron precursors in the early postnatal dorsal white matter. , 2012, Cerebral cortex.

[21]  H. Taniguchi,et al.  Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons , 2015, The Journal of Neuroscience.

[22]  S. Anderson,et al.  Fate mapping Nkx2.1‐lineage cells in the mouse telencephalon , 2008, The Journal of comparative neurology.

[23]  Y. Yanagawa,et al.  Lhx6 Activity Is Required for the Normal Migration and Specification of Cortical Interneuron Subtypes , 2007, The Journal of Neuroscience.

[24]  Z Josh Huang,et al.  Toward a Genetic Dissection of Cortical Circuits in the Mouse , 2014, Neuron.

[25]  Carol Dudley,et al.  Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  N. Jovanov-Milošević,et al.  Populations of subplate and interstitial neurons in fetal and adult human telencephalon , 2010, Journal of anatomy.

[27]  Silvia Arber,et al.  ETS Gene Er81 Controls the Formation of Functional Connections between Group Ia Sensory Afferents and Motor Neurons , 2000, Cell.

[28]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[29]  S. Anderson,et al.  NKX2.1 specifies cortical interneuron fate by activating Lhx6 , 2008, Development.

[30]  A. Visel,et al.  Dlx1&2-Dependent Expression of Zfhx1b (Sip1, Zeb2) Regulates the Fate Switch between Cortical and Striatal Interneurons , 2013, Neuron.

[31]  G. Meyer,et al.  Neurons in the White Matter of the Adult Human Neocortex , 2009, Front. Neuroanat..

[32]  J. Rossier,et al.  Serotonin 3A Receptor Subtype as an Early and Protracted Marker of Cortical Interneuron Subpopulations , 2010, Cerebral cortex.

[33]  G. Miyoshi,et al.  The Requirement of Nkx2-1 in the Temporal Specification of Cortical Interneuron Subtypes , 2008, Neuron.

[34]  N. Kessaris,et al.  PROX1: A Lineage Tracer for Cortical Interneurons Originating in the Lateral/Caudal Ganglionic Eminence and Preoptic Area , 2013, PloS one.

[35]  Kenneth Campbell,et al.  Identification of Two Distinct Progenitor Populations in the Lateral Ganglionic Eminence: Implications for Striatal and Olfactory Bulb Neurogenesis , 2003, The Journal of Neuroscience.

[36]  Matthew Grist,et al.  Spatial Genetic Patterning of the Embryonic Neuroepithelium Generates GABAergic Interneuron Diversity in the Adult Cortex , 2007, The Journal of Neuroscience.

[37]  F. Valverde,et al.  Tangential migration in neocortical development. , 2002, Developmental biology.

[38]  S. Lodato,et al.  Loss of COUP-TFI Alters the Balance between Caudal Ganglionic Eminence- and Medial Ganglionic Eminence-Derived Cortical Interneurons and Results in Resistance to Epilepsy , 2011, The Journal of Neuroscience.

[39]  K. Campbell,et al.  Molecular identity of olfactory bulb interneurons: transcriptional codes of periglomerular neuron subtypes , 2007, Journal of Molecular Histology.

[40]  J. García-Verdugo,et al.  Young neurons from medial ganglionic eminence disperse in adult and embryonic brain , 1999, Nature Neuroscience.

[41]  Jens Hjerling-Leffler,et al.  The Cell-Intrinsic Requirement of Sox6 for Cortical Interneuron Development , 2009, Neuron.

[42]  O. Marín,et al.  Generation of interneuron diversity in the mouse cerebral cortex , 2010, The European journal of neuroscience.

[43]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[44]  B. Clancy,et al.  Structure and projections of white matter neurons in the postnatal rat visual cortex , 2001, The Journal of comparative neurology.

[45]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[46]  M. Götz,et al.  Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb , 2014, Development.

[47]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[48]  H. Tabata,et al.  COUP-TFII Is Preferentially Expressed in the Caudal Ganglionic Eminence and Is Involved in the Caudal Migratory Stream , 2008, The Journal of Neuroscience.

[49]  G. Fishell,et al.  The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype , 2005, Neuron.

[50]  Zhengang Yang,et al.  The Transcription Factor Sp8 Is Required for the Production of Parvalbumin-Expressing Interneurons in the Olfactory Bulb , 2011, The Journal of Neuroscience.

[51]  P. Chameau,et al.  Serotonin receptor 3A controls interneuron migration into the neocortex , 2014, Nature Communications.

[52]  T. Vitalis,et al.  Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain , 2016, Development.

[53]  G. Fishell,et al.  Mechanisms of inhibition within the telencephalon: "where the wild things are". , 2011, Annual review of neuroscience.

[54]  G. Fishell,et al.  The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations , 2002, Nature Neuroscience.

[55]  S. Anderson,et al.  Distinct cortical migrations from the medial and lateral ganglionic eminences. , 2001, Development.

[56]  N. Kessaris,et al.  Genetic programs controlling cortical interneuron fate , 2014, Current Opinion in Neurobiology.

[57]  J. Rubenstein,et al.  NPAS1 Represses the Generation of Specific Subtypes of Cortical Interneurons , 2014, Neuron.

[58]  J. Rubenstein,et al.  Nuclear receptor COUP‐TFII‐expressing neocortical interneurons are derived from the medial and lateral/caudal ganglionic eminence and define specific subsets of mature interneurons , 2013, The Journal of comparative neurology.

[59]  Staci A. Sorensen,et al.  Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics , 2016 .

[60]  S. Kalinichenko,et al.  Subcortical White Matter Interstitial Cells: Their Connections, Neurochemical Specialization, and Role in the Histogenesis of the Cortex , 2003, Neuroscience and Behavioral Physiology.