Point Cloud Registration for LiDAR and Photogrammetric Data: a Critical Synthesis and Performance Analysis on Classic and Deep Learning Algorithms

[1]  C. Stachniss,et al.  KISS-ICP: In Defense of Point-to-Point ICP – Simple, Accurate, and Robust Registration If Done the Right Way , 2022, IEEE Robotics and Automation Letters.

[2]  Virgílio A. Bento,et al.  Point cloud registration and localization based on voxel plane features , 2022, ISPRS Journal of Photogrammetry and Remote Sensing.

[3]  Qingwu Hu,et al.  Robust symmetric iterative closest point , 2022, ISPRS Journal of Photogrammetry and Remote Sensing.

[4]  Yuxing Peng,et al.  Geometric Transformer for Fast and Robust Point Cloud Registration , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Zhen Dong,et al.  You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors , 2021, ACM Multimedia.

[6]  Bailin Deng,et al.  Fast and Robust Iterative Closest Point , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Minsu Cho,et al.  Deep Hough Voting for Robust Global Registration , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[8]  Bailin Deng,et al.  A Robust Loss for Point Cloud Registration , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[9]  Ruodan Lu,et al.  Super Edge 4-Points Congruent Sets-Based Point Cloud Global Registration , 2021, Remote. Sens..

[10]  Pascal Monasse,et al.  TOWARDS EFFICIENT INDOOR/OUTDOOR REGISTRATION USING PLANAR POLYGONS , 2021, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

[11]  Christophe Bobda,et al.  Iterative closest point for accurate plane detection in unorganized point clouds , 2021 .

[12]  Hongtao Wu,et al.  LSG-CPD: Coherent Point Drift with Local Surface Geometry for Point Cloud Registration , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[13]  Chiew-Lan Tai,et al.  PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  K. Schindler,et al.  PREDATOR: Registration of 3D Point Clouds with Low Overlap , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Bo Yang,et al.  SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Heng Yang,et al.  ROBIN: a Graph-Theoretic Approach to Reject Outliers in Robust Estimation using Invariants , 2020, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[17]  Heng Yang,et al.  TEASER: Fast and Certifiable Point Cloud Registration , 2020, IEEE Transactions on Robotics.

[18]  Yanning Zhang,et al.  A Performance Evaluation of Correspondence Grouping Methods for 3D Rigid Data Matching , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Argimiro R. Secchi,et al.  A review on robust M-estimators for regression analysis , 2021, Comput. Chem. Eng..

[20]  Jan Kautz,et al.  DeepGMR: Learning Latent Gaussian Mixture Models for Registration , 2020, ECCV.

[21]  Yusheng Xu,et al.  Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark , 2020 .

[22]  Vladlen Koltun,et al.  Deep Global Registration , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Xianghong Hua,et al.  Fast and Automatic Registration of Terrestrial Point Clouds Using 2D Line Features , 2020, Remote. Sens..

[24]  Peter Wonka,et al.  PLADE: A Plane-Based Descriptor for Point Cloud Registration With Small Overlap , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Raja Giryes,et al.  PointGMM: A Neural GMM Network for Point Clouds , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Long Quan,et al.  D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Rongjun Qin,et al.  Assessment of dense image matchers for digital surface model generation using airborne and spaceborne images – an update , 2020, The Photogrammetric Record.

[28]  L. Carlone,et al.  Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global Outlier Rejection , 2019, IEEE Robotics and Automation Letters.

[29]  Kegen Yu,et al.  Feature Line Generation and Regularization From Point Clouds , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Tat-Jun Chin,et al.  Consensus Maximization Tree Search Revisited , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[31]  Szymon Rusinkiewicz,et al.  A symmetric objective function for ICP , 2019, ACM Trans. Graph..

[32]  Jiaxin Li,et al.  USIP: Unsupervised Stable Interest Point Detection From 3D Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[33]  Luca Carlone,et al.  Outlier-Robust Spatial Perception: Hardness, General-Purpose Algorithms, and Guarantees , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[34]  Luca Carlone,et al.  A Polynomial-time Solution for Robust Registration with Extreme Outlier Rates , 2019, Robotics: Science and Systems.

[35]  Wei Gao,et al.  FilterReg: Robust and Efficient Probabilistic Point-Set Registration Using Gaussian Filter and Twist Parameterization , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Tat-Jun Chin,et al.  Practical optimal registration of terrestrial LiDAR scan pairs , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[37]  F. Neumann,et al.  Robust Fitting in Computer Vision: Easy or Hard? , 2018, International Journal of Computer Vision.

[38]  Weidong Yang,et al.  Ranking 3D feature correspondences via consistency voting , 2019, Pattern Recognit. Lett..

[39]  Zulkepli Majid,et al.  COMPARING THE PERFORMANCE OF POINT CLOUD REGISTRATION METHODS FOR LANDSLIDE MONITORING USING MOBILE LASER SCANNING DATA , 2018, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

[40]  Jan Kautz,et al.  HGMR: Hierarchical Gaussian Mixtures for Adaptive 3D Registration , 2018, ECCV.

[41]  Hao Xu,et al.  Registration of Laser Scanning Point Clouds: A Review , 2018, Sensors.

[42]  Giuseppe C. Calafiore,et al.  Convex Relaxations for Pose Graph Optimization With Outliers , 2018, IEEE Robotics and Automation Letters.

[43]  Tat-Jun Chin,et al.  Guaranteed Outlier Removal for Point Cloud Registration with Correspondences , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Jiri Matas,et al.  Graph-Cut RANSAC , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[45]  Lars Petersson,et al.  Globally-Optimal Inlier Set Maximisation for Simultaneous Camera Pose and Feature Correspondence , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[46]  Xuming Ge,et al.  Automatic markerless registration of point clouds with semantic-keypoint-based 4-points congruent sets , 2017 .

[47]  Cheng Wang,et al.  Facet Segmentation-Based Line Segment Extraction for Large-Scale Point Clouds , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Matthias Nießner,et al.  3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Vladlen Koltun,et al.  Fast Global Registration , 2016, ECCV.

[50]  Juha Hyyppä,et al.  ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences , 2016 .

[51]  Anders P. Eriksson,et al.  Efficient Globally Optimal Consensus Maximisation with Tree Search , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Mohammed Bennamoun,et al.  A Comprehensive Performance Evaluation of 3D Local Feature Descriptors , 2015, International Journal of Computer Vision.

[53]  Konrad Schindler,et al.  Keypoint-based 4-Points Congruent Sets – Automated marker-less registration of laser scans , 2014 .

[54]  Niloy J. Mitra,et al.  Super4PCS: Fast Global Pointcloud Registration via Smart Indexing , 2019 .

[55]  Henrik Gordon Petersen,et al.  In Search of Inliers: 3D Correspondence by Local and Global Voting , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[56]  Gary K. L. Tam,et al.  Registration of 3D Point Clouds and Meshes: A Survey from Rigid to Nonrigid , 2013, IEEE Transactions on Visualization and Computer Graphics.

[57]  Adrian Hilton,et al.  Evaluation of 3D Feature Descriptors for Multi-modal Data Registration , 2013, 2013 International Conference on 3D Vision.

[58]  Mohammed Bennamoun,et al.  Rotational Projection Statistics for 3D Local Surface Description and Object Recognition , 2013, International Journal of Computer Vision.

[59]  Roland Siegwart,et al.  Comparing ICP variants on real-world data sets , 2013, Auton. Robots.

[60]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[61]  Fredrik Kahl,et al.  Robust Fitting for Multiple View Geometry , 2012, ECCV.

[62]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[63]  Joseph L. Mundy,et al.  An Evaluation of Local Shape Descriptors in Probabilistic Volumetric Scenes , 2012, BMVC.

[64]  Benjamin Bustos,et al.  Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes , 2011, The Visual Computer.

[65]  Baba C. Vemuri,et al.  Robust Point Set Registration Using Gaussian Mixture Models , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  Masatoshi Okutomi,et al.  Deterministically maximizing feasible subsystem for robust model fitting with unit norm constraint , 2011, CVPR 2011.

[67]  Federico Tombari,et al.  Performance Evaluation of 3D Keypoint Detectors , 2011, 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission.

[68]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[69]  Jean-Emmanuel Deschaud,et al.  A Fast and Accurate Plane Detection Algorithm for Large Noisy Point Clouds Using Filtered Normals and Voxel Growing , 2010 .

[70]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Wolfgang Förstner,et al.  Plane Detection in Point Cloud Data , 2010 .

[72]  Yu Zhong,et al.  Intrinsic shape signatures: A shape descriptor for 3D object recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[73]  Hongdong Li,et al.  Consensus set maximization with guaranteed global optimality for robust geometry estimation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[74]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[75]  Aleksandr V. Segal,et al.  Generalized-ICP , 2009, Robotics: Science and Systems.

[76]  Richard I. Hartley,et al.  Global Optimization through Rotation Space Search , 2009, International Journal of Computer Vision.

[77]  Jan-Michael Frahm,et al.  A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus , 2008, ECCV.

[78]  Daniel Cohen-Or,et al.  4-points congruent sets for robust pairwise surface registration , 2008, ACM Trans. Graph..

[79]  Carl Olsson,et al.  A polynomial-time bound for matching and registration with outliers , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[80]  Claus Brenner,et al.  Coarse orientation of terrestrial laser scans in urban environments , 2008 .

[81]  Reinhard Klein,et al.  Efficient RANSAC for Point‐Cloud Shape Detection , 2007, Comput. Graph. Forum.

[82]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[83]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[84]  Hui Chen,et al.  3D free-form object recognition in range images using local surface patches , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[85]  R. Sukthankar,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[86]  Vladimir Kolmogorov,et al.  Spatially coherent clustering using graph cuts , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[87]  P. Nagabhushan,et al.  A simple and robust line detection algorithm based on small eigenvalue analysis , 2004, Pattern Recognit. Lett..

[88]  Jiri Matas,et al.  Locally Optimized RANSAC , 2003, DAGM-Symposium.

[89]  Ioannis Stamos,et al.  Automated feature-based range registration of urban scenes of large scale , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[90]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[91]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[92]  Paul J. Besl,et al.  Method for registration of 3-D shapes , 1992, Other Conferences.

[93]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[94]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[95]  Leslie Greengard,et al.  The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..

[96]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[97]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[98]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[99]  Robert C. Bolles,et al.  Parametric Correspondence and Chamfer Matching: Two New Techniques for Image Matching , 1977, IJCAI.

[100]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .