Optimal control of linear time‐delay systems by a hybrid of block‐pulse functions and biorthogonal cubic Hermite spline multiwavelets

[1]  Mohsen Razzaghi,et al.  Optimal control of linear delay systems via hybrid of block-pulse and Legendre polynomials , 2004, J. Frankl. Inst..

[2]  Yadollah Ordokhani,et al.  An Application of Walsh Functions for Fredholm-Hammerstein Integro-Differential Equations , 2010 .

[3]  Gabil Yagubov,et al.  Numerical Solution of an Optimal Control Problem Governed by Two Dimensional Schrodinger Equation , 2015 .

[4]  Amin Jajarmi,et al.  An efficient recursive shooting method for the optimal control of time-varying systems with state time-delay , 2016 .

[5]  Mohsen Razzaghi,et al.  HYBRID FUNCTIONS APPROACH FOR LINEARLY CONSTRAINED QUADRATIC OPTIMAL CONTROL PROBLEMS , 2003 .

[6]  Moustafa A. Soliman,et al.  Optimal feedback control for linear-quadratic systems having time delays† , 1972 .

[7]  M. Razzaghi,et al.  Numerical solution of the controlled Duffing oscillator by semi-orthogonal spline wavelets , 2006 .

[8]  Yadollah Ordokhani,et al.  A numerical solution for fractional optimal control problems via Bernoulli polynomials , 2016 .

[9]  Hossein Jafari,et al.  On comparison between iterative methods for solving nonlinear optimal control problems , 2016 .

[10]  Saurabh Singh,et al.  A stable algorithm for Hankel transforms using hybrid of Block-pulse and Legendre polynomials , 2010, Comput. Phys. Commun..

[11]  H. Banks,et al.  Hereditary Control Problems: Numerical Methods Based on Averaging Approximations , 1978 .

[12]  Mehdi Dehghan,et al.  Collocation method for the numerical solutions of Lane–Emden type equations using cubic Hermite spline functions , 2014 .

[13]  Daim-Yuang Sun,et al.  The solutions of time-delayed optimal control problems by the use of modified line-up competition algorithm , 2010 .

[14]  Mohsen Razzaghi,et al.  DIRECT METHOD FOR VARIATIONAL PROBLEMS VIA HYBRID OF BLOCK-PULSE AND CHEBYSHEV FUNCTIONS , 2000 .

[15]  Nastaran Vasegh,et al.  Suboptimal control of linear systems with delays in state and input by orthonormal basis , 2011, Int. J. Comput. Math..

[16]  Keith J. Burnham,et al.  An almost optimal control design method for nonlinear time-delay systems , 2012, Int. J. Control.

[17]  Shirin Fallahi,et al.  A modified control parametrization method for the numerical solution of bang–bang optimal control problems , 2015 .

[18]  C. Hwang,et al.  Optimal control of delay systems via block pulse functions , 1985 .

[19]  Ing-Rong Horng,et al.  ANALYSIS, PARAMETER ESTIMATION AND OPTIMAL CONTROL OF TIME-DELAY SYSTEMS VIA CHEBYSHEV SERIES , 1985 .

[20]  Mohsen Razzaghi,et al.  Linear quadratic optimal control problems via shifted Legendre state parametrization , 1994 .

[21]  Mohamed S. Mohamed,et al.  Application of Optimal HAM for Solving the Fractional Order Logistic Equation , 2014 .

[22]  H. Maurer,et al.  Optimal control problems with delays in state and control variables subject to mixed control–state constraints , 2009 .

[24]  Sarp Adali,et al.  Optimal control of a beam with Kelvin–Voigt damping subject to forced vibrations using a piezoelectric patch actuator , 2015 .

[25]  Mo M. Jamshidi,et al.  A computational algorithm for large-scale nonlinear time-delay systems , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  Alireza Nazemi,et al.  Solving optimal control problems of the time-delayed systems by Haar wavelet , 2016 .

[27]  O. Makinde,et al.  Modelling Infectiology and Optimal Control of Dengue Epidemic , 2015 .

[28]  W. Dahmen,et al.  Biorthogonal Multiwavelets on the Interval: Cubic Hermite Splines , 2000 .

[29]  Llan Y. Lee Numerical solution of time-delayed optimal control problems with terminal inequality constraints , 1993 .

[30]  Yadollah Ordokhani,et al.  An efficient approximate method for solving delay fractional optimal control problems , 2016, Nonlinear Dynamics.

[31]  Yadollah Ordokhani,et al.  Optimal Control of Delay Systems by Using a Hybrid Functions Approximation , 2012, J. Optim. Theory Appl..

[32]  Wolfgang Dahmen,et al.  Local Decomposition of Refinable Spaces and Wavelets , 1996 .

[33]  Vom Fachbereich Mathematik,et al.  Stabile biorthogonale Spline-Waveletbasen auf dem Intervall , 2006 .

[34]  K. R. Palanisamy,et al.  Optimal control of linear time-varying delay systems via single-term walsh series , 1988 .

[35]  B. Hong Small Gain Theorem for Distributed Feedback Control of Sturm-Liouville Dynamics , 2014 .

[36]  Mortaza Gachpazan,et al.  Optimal control of time-varying linear delay systems based on the Bezier curves , 2014 .

[37]  F. Khellat,et al.  Optimal Control of Linear Time-Delayed Systems by Linear Legendre Multiwavelets , 2009 .

[38]  Xing Tao Wang Numerical solutions of optimal control for linear time-varying systems with delays via hybrid functions , 2007, J. Frankl. Inst..

[39]  D. Clements,et al.  Optimal control computation for linear time-lag systems with linear terminal constraints , 1984 .

[40]  C. Chui,et al.  On solving first-kind integral equations using wavelets on a bounded interval , 1995 .

[41]  K. Maleknejad,et al.  The use of rationalized Haar wavelet collocation method for solving optimal control of Volterra integral equations , 2015 .