Self-Similar Functions Generated by Cellular Automata
暂无分享,去创建一个
[1] Alejandro Maass,et al. Représentation par automate de fonctions continues de tore , 1996 .
[2] B. Voorhees. Computational Analysis of One-Dimensional Cellular Automata , 1995 .
[3] Ethan Akin,et al. The general topology of dynamical systems , 1993 .
[4] Heinz-Otto Peitgen,et al. Global analysis of self-similarity features of cellular automata: selected examples , 1995 .
[5] T. Kamae. A characterization of self-affine functions , 1986 .
[6] I. Cornfeld. Ergodic theory / I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai , 1982 .
[7] Heinz-Otto Peitgen,et al. Self-affine curves and sequential machines , 1996 .
[8] Rune Kleveland,et al. Mixing properties of one-dimensional cellular automata , 1997 .
[9] C. Caramanis. What is ergodic theory , 1963 .
[10] G. A. Edgar. Measure, Topology, and Fractal Geometry , 1990 .
[11] J.-P. Allouche. Finite Automata in 1-D and 2-D Physics , 1990 .
[12] Petr Kurka,et al. Topological and measure-theoretic properties of one-dimensional cellular automata , 1997 .
[13] Michael Frame,et al. The Canopy and Shortest Path in a Self-Contacting Fractal Tree , 1999 .
[14] J. Lense. Elementarmathematik vom höheren Standpunkt aus I , 1926 .
[15] Stephen Wolfram,et al. Cellular Automata And Complexity , 1994 .
[16] K. Sigmund,et al. Ergodic Theory on Compact Spaces , 1976 .
[17] M. Shirvani,et al. On ergodic one-dimensional cellular automata , 1991 .
[18] György Targonski,et al. Topics in Iteration Theory , 1981 .
[19] Max H. Garzon,et al. Models of massive parallelism: analysis of cellular automata and neural networks , 1995 .
[20] R. Daniel Mauldin,et al. Hausdorff dimension in graph directed constructions , 1988 .