Parameter estimation and prediction for groundwater contamination based on measure theory

The problem of groundwater contamination in an aquifer is one with many uncertainties. Properly quantifying these uncertainties is essential in order to make reliable probabilistic-based predictions and decisions regarding remediation strategies. In this work, a measure-theoretic framework is employed to quantify uncertainties in a simplified groundwater contamination transport model. Given uncertain data from observation wells, the stochastic inverse problem is solved numerically to obtain a probability measure on the space of unknown model parameters characterizing groundwater flow and contaminant transport in an aquifer, as well as unknown model boundary or source terms such as the contaminant source release into the environment. This probability measure is used to make predictions of future contaminant concentrations and to analyze possible remediation techniques. The ability to identify regions of small but nonzero probability using this method is illustrated.

[1]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[2]  J. Westerink,et al.  Definition and solution of a stochastic inverse problem for the Manning’s n parameter field in hydrodynamic models , 2015, Advances in water resources.

[3]  S. P. Neuman,et al.  Estimation of aquifer parameters under transient and steady-state conditions: 2 , 1986 .

[4]  Ming Ye,et al.  Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff , 2003 .

[5]  R. H. Petrucci,et al.  General Chemistry: Principles and Modern Applications , 1972 .

[6]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[7]  S. P. Neuman,et al.  Longitudinal dispersivity data and implications for scaling behavior. , 2006, Ground water.

[8]  S. Gorelick,et al.  Optimal groundwater quality management under parameter uncertainty , 1987 .

[9]  J. C. Ramírez,et al.  Estimation of aquifer parameters under transient and steady-state conditions , 1984 .

[10]  Velimir V. Vesselinov,et al.  Groundwater remediation using the information gap decision theory , 2014 .

[11]  Daniel M. Tartakovsky,et al.  Probabilistic risk analysis in subsurface hydrology , 2007 .

[12]  C. Welty,et al.  A Critical Review of Data on Field-Scale Dispersion in Aquifers , 1992 .

[13]  J. P. Delhomme,et al.  Spatial variability and uncertainty in groundwater flow parameters: A geostatistical approach , 1979 .

[14]  Andrea Critto,et al.  Decision Support Systems for Risk-Based Management of Contaminated Sites , 2009 .

[15]  S. P. Neuman Universal scaling of hydraulic conductivities and dispersivities in geologic media , 1990 .

[16]  Velimir V. Vesselinov,et al.  An agent-based approach to global uncertainty and sensitivity analysis , 2012, Comput. Geosci..

[17]  Wolfgang Nowak,et al.  Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design , 2012 .

[18]  Cass T. Miller,et al.  Optimal design for problems involving flow and transport phenomena in saturated subsurface systems , 2002 .

[19]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[20]  K. Abbaspour,et al.  A sequential uncertainty domain inverse procedure for estimating subsurface flow and transport parameters , 1997 .

[21]  D. Estep,et al.  A numerical method for solving a stochastic inverse problem for parameters. , 2013, Annals of nuclear energy.

[22]  J. Breidt,et al.  A Measure-Theoretic Computational Method for Inverse Sensitivity Problems I: Method and Analysis , 2011, SIAM J. Numer. Anal..

[23]  Cajo J. F. ter Braak,et al.  Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? , 2009 .

[24]  Simon Tavener,et al.  A Measure-Theoretic Computational Method for Inverse Sensitivity Problems III: Multiple Quantities of Interest , 2014, SIAM/ASA J. Uncertain. Quantification.

[25]  William F. Caselton,et al.  Decision making with imprecise probabilities: Dempster‐Shafer Theory and application , 1992 .

[26]  Velimir V. Vesselinov,et al.  Contaminant remediation decision analysis using information gap theory , 2011, Stochastic Environmental Research and Risk Assessment.

[27]  Keith W. Hipel,et al.  Decision making in an uncertain world: information-gap modeling in water resources management , 1999, IEEE Trans. Syst. Man Cybern. Part C.

[28]  Ming Ye,et al.  Incorporation of conceptual and parametric uncertainty into radionuclide flux estimates from a fractured granite rock mass , 2010 .

[29]  Keith Beven,et al.  On red herrings and real herrings: disinformation and information in hydrological inference , 2011 .

[30]  Dirk Schulze-Makuch,et al.  Longitudinal dispersivity data and implications for scaling behavior , 2005, Ground water.

[31]  Robert M. Argent,et al.  A new approach to water quality modelling and environmental decision support systems , 2009, Environ. Model. Softw..

[32]  W.,et al.  A Critical Review of Data on Field-Scale Dispersion in Aquifers , 2009 .

[33]  Andres Alcolea,et al.  Inverse problem in hydrogeology , 2005 .

[34]  Philip John Binning,et al.  Uncertainty evaluation of mass discharge estimates from a contaminated site using a fully Bayesian framework , 2010 .

[35]  J. Doherty,et al.  Calibration‐constrained Monte Carlo analysis of highly parameterized models using subspace techniques , 2009 .

[36]  G. Dagan Stochastic modeling of groundwater flow by unconditional and conditional probabilities: 1. Conditional simulation and the direct problem , 1982 .

[37]  Yoram Rubin,et al.  Bayesian Geostatistical Design: Optimal Site Investigation When the Geostatistical Model is Uncertain , 2009 .

[38]  Huayong Wu,et al.  Analytical solutions of three-dimensional contaminant transport in uniform flow field in porous media: A library , 2009 .

[39]  Troy D. Butler,et al.  A Computational Measure Theoretic Approach to Inverse Sensitivity Problems II: A Posteriori Error Analysis , 2012, SIAM J. Numer. Anal..

[40]  Joel Massmann,et al.  Hydrogeological Decision Analysis: 2. Applications to Ground‐Water Contamination , 1991 .

[41]  K. Beven,et al.  Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach , 1996 .

[42]  Q. Kang,et al.  Optimization and uncertainty assessment of strongly nonlinear groundwater models with high parameter dimensionality , 2010 .

[43]  Daniel M. Tartakovsky,et al.  Probabilistic risk analysis of groundwater remediation strategies , 2009 .

[44]  Michael Finkel,et al.  Application of monitored natural attenuation in contaminated land management—A review and recommended approach for Europe , 2006 .

[45]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information , 1986 .

[46]  Joel Massmann,et al.  Hydrogeological Decision Analysis: 1. A Framework , 1990 .

[47]  Gyozo Jordan,et al.  Decision support methods for the environmental assessment of contamination at mining sites , 2013, Environmental Monitoring and Assessment.