Nanostructures and enhanced thermoelectric properties in Ce-filled skutterudite bulk materials

The nanostructures induced by uniaxial compression in Ce0.29Fe1.40Co2.60Sb11.24 bulk thermoelectric material is reported. High-resolution transmission electron microscope images reveal that the nanostructures consist of Ce0.31Fe1.38Co2.62Sb11.56 crystals and Fe0.34Co0.66Sb1.99 minicrystal/noncrystal with grain sizes about 5–20nm. It is shown that the Seebeck coefficient is increased by 21%, the phonon thermal conductivity is reduced by 19%, while the electrical conductivity rises slightly at 300K. This leads to a surprising increase in the power factor by 51%. The significant increase of Seebeck coefficient and the remarkable reduction of phonon thermal conductivity are believed to be due to quantum effect and size effect of the nanostructures, respectively.The nanostructures induced by uniaxial compression in Ce0.29Fe1.40Co2.60Sb11.24 bulk thermoelectric material is reported. High-resolution transmission electron microscope images reveal that the nanostructures consist of Ce0.31Fe1.38Co2.62Sb11.56 crystals and Fe0.34Co0.66Sb1.99 minicrystal/noncrystal with grain sizes about 5–20nm. It is shown that the Seebeck coefficient is increased by 21%, the phonon thermal conductivity is reduced by 19%, while the electrical conductivity rises slightly at 300K. This leads to a surprising increase in the power factor by 51%. The significant increase of Seebeck coefficient and the remarkable reduction of phonon thermal conductivity are believed to be due to quantum effect and size effect of the nanostructures, respectively.

[1]  H. Gleiter,et al.  Nanostructured materials: basic concepts and microstructure☆ , 2000 .

[2]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical Review B (Condensed Matter).

[3]  W. Jeitschko,et al.  LaFe4P12 with filled CoAs3‐type structure and isotypic lanthanoid–transition metal polyphosphides , 1977 .

[4]  George S. Nolas,et al.  High figure of merit in Eu-filled CoSb3-based skutterudites , 2002 .

[5]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[6]  Qingjie Zhang,et al.  Impact of grain sizes on phonon thermal conductivity of bulk thermoelectric materials , 2005 .

[7]  Takashi Goto,et al.  Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−xSb12(R:Ce,Ba,Y;M:Fe,Ni) , 2005 .

[8]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[9]  Ctirad Uher,et al.  Chapter 5 Skutterudites: Prospective novel thermoelectrics , 2001 .

[10]  Yu Zhang,et al.  Nanostructured Co1-xNixSb3 skutterudites : Synthesis, thermoelectric properties, and theoretical modeling , 2003 .

[11]  George S. Nolas,et al.  High figure of merit in partially filled ytterbium skutterudite materials , 2000 .

[12]  Jihui Yang,et al.  Filling fraction limit for intrinsic voids in crystals: doping in skutterudites. , 2005, Physical review letters.

[13]  Wei Liu,et al.  Thermal conductivity of skutterudite thin films and superlattices , 2000 .

[14]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[15]  M. Dehmas,et al.  High temperature transport properties of partially filled CaxCo4Sb12 skutterudites , 2004 .

[16]  E. Bauer,et al.  Evidence for rattling behavior of the filler atom(L)in the filled skutteruditesLT4X12(L=Ce,Eu,Yb;T=Fe,Ru;X=P,Sb)from EXAFS studies , 2004 .

[17]  M. Toprak,et al.  The Impact of Nanostructuring on the Thermal Conductivity of Thermoelectric CoSb3 , 2004 .

[18]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[19]  C. Uher,et al.  CERIUM FILLING AND DOPING OF COBALT TRIANTIMONIDE , 1997 .

[20]  George S. Nolas,et al.  Effect of partial void filling on the lattice thermal conductivity of skutterudites , 1998 .

[21]  B. Sales,et al.  Thermoelectric properties of thallium-filled skutterudites , 2000 .

[22]  Muhammet S. Toprak,et al.  Nanostructured Co1−xNix(Sb1−yTey)3 skutterudites: Theoretical modeling, synthesis and thermoelectric properties , 2005 .

[23]  Donald T. Morelli,et al.  Thermopower enhancement in lead telluride nanostructures , 2004 .