Distribution results for low-weight binary representations for pairs of integers
暂无分享,去创建一个
[1] Helmut Prodinger,et al. On Minimal Expansions in Redundant Number Systems: Algorithms and Quantitative Analysis , 2001, Computing.
[2] Andrew D. Booth,et al. A SIGNED BINARY MULTIPLICATION TECHNIQUE , 1951 .
[3] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[4] Hubert Delange. Sur les fonctions q-additives ou q-multiplicatives , 1972 .
[5] J. Solinas. Low-Weight Binary Representations for Pairs of Integers , 2001 .
[6] C. Esseen. Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law , 1945 .
[7] Peter J. Grabner,et al. On The Sum of Digits Function for Number Systems with Negative Bases , 2000 .
[8] Roberto Maria Avanzi. The Complexity of Certain Multi-Exponentiation Techniques in Cryptography , 2004, Journal of Cryptology.
[9] Peter J. Grabner,et al. Distribution of Binomial Coefficients and Digital Functions , 2001 .
[10] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[11] J. Olivos,et al. Speeding up the computations on an elliptic curve using addition-subtraction chains , 1990, RAIRO Theor. Informatics Appl..
[12] Michel Rigo,et al. Additive Functions with Respect to Numeration Systems on Regular Languages , 2003 .
[13] K. Falconer. Techniques in fractal geometry , 1997 .
[14] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[15] A. C. Berry. The accuracy of the Gaussian approximation to the sum of independent variates , 1941 .
[16] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[17] S. Krantz. Fractal geometry , 1989 .
[18] Roberto Maria Avanzi,et al. On multi-exponentiation in cryptography , 2002, IACR Cryptol. ePrint Arch..