The space of solution alternatives in the optimal lotsizing problem for general assembly systems applying MRP theory

MRP Theory combines the use of Input–Output Analysis and Laplace transforms, enabling the development of a theoretical background for multi-level, multi-stage production–inventory systems together with their economic evaluation, in particular applying the Net Present Value principle (NPV).

[1]  Ludvik Bogataj,et al.  A market game with the characteristic function according to the MRP and input–output analysis model , 1999 .

[2]  Cem Saydam,et al.  An Efficient Zero-One Formulation of the Multilevel Lot-Sizing Problem , 1991 .

[3]  Robert W. Grubbström,et al.  THE AXSÄTER INTEGRATED PRODUCTION-INVENTORY SYSTEM INTERPRETED IN TERMS OF THE THEORY OF RELATIVELY CLOSED SYSTEMS , 1977 .

[4]  Nicolas Jonard,et al.  A genetic algorithm to solve the general multi-level lot-sizing problem with time-varying costs , 2000 .

[5]  Ou Tang,et al.  An Overview of Input-Output Analysis Applied to Production-Inventory Systems , 2000 .

[6]  Robert W. Grubbström,et al.  Efficient location of industrial activity cells in a global supply chain , 2011 .

[7]  Robert W. Grubbström,et al.  Further theoretical considerations on the relationship between MRP, input-output analysis and multi-echelon inventory systems , 1994 .

[8]  Yeong-Dae Kim,et al.  Simulated annealing and genetic algorithms for scheduling products with multi-level product structure , 1996, Comput. Oper. Res..

[9]  R. W. Grubbström,et al.  Intertemporal generalization of the relationship between material requirements planning and input-output analysis , 1992 .

[10]  R. W. Grubbström,et al.  Modelling rescheduling activities in a multi–period production-inventory system , 2000 .

[11]  Robert W. Grubbström,et al.  Planning and replanning the master production schedule under demand uncertainty , 2002 .

[12]  H. Albert Napier,et al.  Optimal Multi-Level Lot Sizing for Requirements Planning Systems , 1980 .

[13]  Robert W. Grubbström Some aspects on modelling as a base for scientific recommendations , 2001 .

[14]  Alf Kimms,et al.  A genetic algorithm for multi-level, multi-machine lot sizing and scheduling , 1999, Comput. Oper. Res..

[15]  A. Federgruen,et al.  A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0n log n or 0n Time , 1991 .

[16]  Arthur F. Veinott,et al.  Minimum Concave-Cost Solution of Leontief Substitution Models of Multi-Facility Inventory Systems , 1969, Oper. Res..

[17]  Robert W. Grubbström,et al.  On The Application of the Laplace Transform to Certain Economic Problems , 1967 .

[18]  David F. Pyke,et al.  Inventory management and production planning and scheduling , 1998 .

[19]  Harvey M. Wagner,et al.  Dynamic Version of the Economic Lot Size Model , 2004, Manag. Sci..

[20]  J. J. Sylvester,et al.  On a Point in the Theory of Vulgar Fractions , 1880 .

[21]  Graham K. Rand,et al.  Inventory Management and Production Planning and Scheduling (Third Edition) , 2001, J. Oper. Res. Soc..

[22]  Ou Tang,et al.  Simulated annealing in lot sizing problems , 2004 .

[23]  Bezalel Gavish,et al.  Optimal Lot-Sizing Algorithms for Complex Product Structures , 1986, Oper. Res..

[24]  N. Sloane,et al.  Some doubly exponential sequences , 1973 .

[25]  Marija Bogataj,et al.  Optimal lotsizing within MRP Theory , 2010, Annu. Rev. Control..

[26]  I. Kaku,et al.  A Simple Heuristic Algorithm Based on Segmentation to Solve Multilevel Lot-sizing Problems , 2009 .

[27]  R. Kuik,et al.  Multi-level lot-sizing problem: Evaluation of a simulated-annealing heuristic , 1990 .

[28]  Joseph D. Blackburn,et al.  The impact of a rolling schedule in a multi-level MRP system , 1982 .

[29]  D. Bogataj,et al.  Measuring the supply chain risk and vulnerability in frequency space , 2007 .

[30]  Jully Jeunet,et al.  Solving large unconstrained multilevel lot-sizing problems using a hybrid genetic algorithm , 2000 .

[31]  Robert W. Grubbström,et al.  A Survey and Analysis of the Application of the Laplace Transform to Present Value Problems , 1989 .

[32]  U. Karmarkar,et al.  Computationally Efficient Optimal Solutions to the Lot-Sizing Problem in Multistage Assembly Systems , 1984 .

[33]  Stephen A. Buser LaPlace Transforms as Present Value Rules: A Note , 1986 .

[34]  Robert W. Grubbström,et al.  A principle for determining the correct capital costs of work-in-progress and inventory , 1980 .