Cutaneous Lupus Erythematosus: An Update on Pathogenesis and Future Therapeutic Directions

[1]  N. Katoh,et al.  Subacute cutaneous lupus erythematosus successfully treated with topical delgocitinib , 2022, The Journal of dermatology.

[2]  K. Kalunian,et al.  A Randomized, Placebo‐Controlled Phase III Extension Trial of the Long‐Term Safety and Tolerability of Anifrolumab in Active Systemic Lupus Erythematosus , 2022, Arthritis & rheumatology.

[3]  T. Bieber,et al.  Characterization of B cells in lupus erythematosus skin biopsies in the context of different immune cell infiltration patterns , 2022, Frontiers in Medicine.

[4]  M. Vesely,et al.  Treatment of cutaneous lupus with topical ruxolitinib cream , 2022, JAAD case reports.

[5]  G. Foulke,et al.  Anifrolumab for treatment of refractory cutaneous lupus erythematosus , 2022, Clinical and experimental dermatology.

[6]  M. Ogunsanya,et al.  Influence of Socio-Demographic Factors in Patients With Cutaneous Lupus Erythematosus , 2022, Frontiers in Medicine.

[7]  A. Marshak‐Rothstein,et al.  Th2 to Th1 Transition Is Required for Induction of Skin Lesions in an Inducible and Recurrent Murine Model of Cutaneous Lupus–Like Inflammation , 2022, Frontiers in Immunology.

[8]  B. Chong,et al.  The Genetic Landscape of Cutaneous Lupus Erythematosus , 2022, Frontiers in Medicine.

[9]  P. Korsten,et al.  Rapid Response of Refractory Systemic Lupus Erythematosus Skin Manifestations to Anifrolumab—A Case-Based Review of Clinical Trial Data Suggesting a Domain-Based Therapeutic Approach , 2022, Journal of clinical medicine.

[10]  J. Wenzel,et al.  Current Concepts on Pathogenic Mechanisms and Histopathology in Cutaneous Lupus Erythematosus , 2022, Frontiers in Medicine.

[11]  J. Merrill,et al.  LB0004 EFFICACY AND SAFETY OF DEUCRAVACITINIB, AN ORAL, SELECTIVE, ALLOSTERIC TYK2 INHIBITOR, IN PATIENTS WITH ACTIVE SYSTEMIC LUPUS ERYTHEMATOSUS: A PHASE 2, RANDOMIZED, DOUBLE-BLIND, PLACEBO-CONTROLLED STUDY , 2022, Annals of the Rheumatic Diseases.

[12]  T. Dörner,et al.  POS0190 EFFICACY AND SAFETY OF BARICITINIB IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS: RESULTS FROM TWO RANDOMISED, DOUBLE-BLIND, PLACEBO-CONTROLLED, PARALLEL-GROUP, PHASE 3 STUDIES , 2022, Annals of the Rheumatic Diseases.

[13]  A. Kivitz,et al.  AB0432 EFAVALEUKIN ALFA, A NOVEL IL-2 MUTEIN, SELECTIVELY EXPANDS REGULATORY T CELLS IN PATIENTS WITH SLE: FINAL RESULTS OF A PHASE 1B MULTIPLE ASCENDING DOSE STUDY , 2022, Annals of the Rheumatic Diseases.

[14]  V. Werth,et al.  Multidimensional Immune Profiling of Cutaneous Lupus Erythematosus In Vivo Stratified by Patient Response to Antimalarials , 2022, Arthritis & rheumatology.

[15]  L. Peyrin-Biroulet,et al.  Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. , 2022, The New England journal of medicine.

[16]  S. Arava,et al.  B cell depletion therapy using rituximab to induce long-term remission of recalcitrant skin lesions of subacute cutaneous lupus erythematosus , 2022, BMJ Case Reports.

[17]  M. Pellegrini,et al.  Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation , 2022, Science Translational Medicine.

[18]  L. Arnaud,et al.  Prevalence and factors associated with long-term remission in cutaneous lupus: a longitudinal cohort study of 141 cases. , 2022, Journal of the American Academy of Dermatology.

[19]  N. Tovanabutra,et al.  Acitretin treatment in antimalarial-refractory/intolerant discoid lupus erythematosus: A prospective, open-label, uncontrolled study , 2022, Lupus.

[20]  T. Dörner,et al.  Phase 2 Trial of Iberdomide in Systemic Lupus Erythematosus. , 2022, The New England journal of medicine.

[21]  Md Yuzaiful Md Yusof,et al.  Efficacy and safety of obinutuzumab in systemic lupus erythematosus patients with secondary non-response to rituximab. , 2022, Rheumatology.

[22]  J. Grant-Kels,et al.  Emerging Therapeutics in the Management of Connective Tissue Disease. Part I. Lupus Erythematosus and Sjögren's Syndrome. , 2022, Journal of the American Academy of Dermatology.

[23]  I. Bruce,et al.  Efficacy of anifrolumab across organ domains in patients with moderate-to-severe systemic lupus erythematosus: a post-hoc analysis of pooled data from the TULIP-1 and TULIP-2 trials. , 2022, The Lancet. Rheumatology.

[24]  Zhuoli Zhang,et al.  Telitacicept, a novel humanized, recombinant TACI-Fc fusion protein, for the treatment of systemic lupus erythematosus. , 2022, Drugs of today.

[25]  J. Dutz,et al.  Oral tofacitinib citrate for recalcitrant cutaneous lupus , 2021, JAAD case reports.

[26]  V. Werth,et al.  Emerging Therapies in Cutaneous Lupus Erythematosus , 2020, Frontiers in Medicine.

[27]  A. Kreuter,et al.  Baricitinib for recalcitrant subacute cutaneous lupus erythematosus with concomitant frontal fibrosing alopecia , 2021, Clinical and experimental dermatology.

[28]  M. Bagot,et al.  Clinical efficacy of selective JAK1 inhibition and transcriptome analysis of chronic discoid lupus erythematosus , 2021, Journal of the European Academy of Dermatology and Venereology : JEADV.

[29]  L. Tsoi,et al.  B Cell Signatures Distinguish Cutaneous Lupus Erythematosus Subtypes and the Presence of Systemic Disease Activity , 2021, Frontiers in Immunology.

[30]  J. von Kempis,et al.  Treatment of refractory subacute cuataneous lupus erythematosus with baricitinib , 2021, Clinical and experimental dermatology.

[31]  D. Deng,et al.  Decreased miR-4512 Levels in Monocytes and Macrophages of Individuals With Systemic Lupus Erythematosus Contribute to Innate Immune Activation and Neutrsophil NETosis by Targeting TLR4 and CXCL2 , 2021, Frontiers in Immunology.

[32]  J. Wenzel,et al.  Targeted Therapies in Autoimmune Skin Diseases. , 2021, The Journal of investigative dermatology.

[33]  Katherine I Jicha,et al.  Cutaneous lupus erythematosus/lichen planus overlap syndrome , 2021, JAAD case reports.

[34]  V. Werth,et al.  Comparative responsiveness of cutaneous lupus erythematosus patients to methotrexate and mycophenolate mofetil: a cohort study. , 2021, Journal of the American Academy of Dermatology.

[35]  D. Wallace,et al.  Filgotinib or lanraplenib in moderate to severe cutaneous lupus erythematosus: a phase 2, randomized, double-blind, placebo-controlled study , 2021, Rheumatology.

[36]  T. Bieber,et al.  Cutaneous Adverse Reactions to COVID-19 Vaccines: Insights from an Immuno-Dermatological Perspective , 2021, Vaccines.

[37]  R. Fischer-Betz,et al.  S2k guideline: Diagnosis and management of cutaneous lupus erythematosus – Part 2: Therapy, risk factors and other special topics , 2021, Journal der Deutschen Dermatologischen Gesellschaft = Journal of the German Society of Dermatology : JDDG.

[38]  R. Fischer-Betz,et al.  S2k guideline: Diagnosis and management of cutaneous lupus erythematosus – Part 1: Classification, diagnosis, prevention, activity scores , 2021, Journal der Deutschen Dermatologischen Gesellschaft = Journal of the German Society of Dermatology : JDDG.

[39]  Q. Lu,et al.  A novel humanized cutaneous lupus erythematosus mouse model mediated by IL-21-induced age-associated B cells. , 2021, Journal of autoimmunity.

[40]  M. Bonet,et al.  Belimumab in subacute cutaneous lupus erythematosus , 2021, Lupus.

[41]  D. D'cruz,et al.  British Association of Dermatologists guidelines for the management of people with cutaneous lupus erythematosus 2021 , 2021, The British journal of dermatology.

[42]  Xiaoqian Wang,et al.  B cell subset composition segments clinically and serologically distinct groups in chronic cutaneous lupus erythematosus , 2021, Annals of the Rheumatic Diseases.

[43]  Michael A. Smith,et al.  Depleting plasmacytoid dendritic cells reduces local type I interferon responses and disease activity in patients with cutaneous lupus , 2021, Science Translational Medicine.

[44]  I. Bruce,et al.  Phase 2, randomized, placebo-controlled trial of dapirolizumab pegol in patients with moderate-to-severe active systemic lupus erythematosus , 2021, Rheumatology.

[45]  G. Espinosa,et al.  Successful treatment of two cases of refractory cutaneous lupus erythematosus with belimumab. , 2021, Indian journal of dermatology, venereology and leprology.

[46]  E. Morand,et al.  Safety profile of anifrolumab in patients with active SLE: an integrated analysis of phase II and III trials , 2021, Lupus Science & Medicine.

[47]  I. Lerman,et al.  Human cutaneous B cells: what do we really know? , 2020, Annals of translational medicine.

[48]  T. Bieber,et al.  Immunostimulatory Endogenous Nucleic Acids Perpetuate Interface Dermatitis—Translation of Pathogenic Fundamentals Into an In Vitro Model , 2021, Frontiers in Immunology.

[49]  Jane K. Nguyen,et al.  Partial Protection From Lupus-Like Disease by B-Cell Specific Type I Interferon Receptor Deficiency , 2021, Frontiers in Immunology.

[50]  J. Wenzel,et al.  Safety, pharmacokinetics and pharmacodynamics of a topical SYK inhibitor in cutaneous lupus erythematosus: A double‐blind Phase Ib study , 2020, Experimental dermatology.

[51]  D. Murrell,et al.  Comparison of effectiveness of topical tacrolimus 0.1% vs topical halobetasol propionate 0.05% as an add‐on to oral hydroxychloroquine in discoid lupus erythematosus , 2020, Dermatologic therapy.

[52]  J. Wenzel,et al.  Skin-Associated B Cells in the Pathogenesis of Cutaneous Autoimmune Diseases—Implications for Therapeutic Approaches , 2020, Cells.

[53]  L. Arnaud,et al.  Long-term efficacy and safety outcomes of lenalidomide for cutaneous lupus erythematosus: a multicenter retrospective observational study of 40 patients. , 2020, Journal of the American Academy of Dermatology.

[54]  Yoshiya Tanaka,et al.  Amiselimod, a sphingosine 1-phosphate receptor-1 modulator, for systemic lupus erythematosus: A multicenter, open-label exploratory study , 2020, Lupus.

[55]  V. Werth,et al.  An Update on the Pathogenesis of Cutaneous Lupus Erythematosus and Its Role in Clinical Practice , 2020, Current Rheumatology Reports.

[56]  Q. Lu,et al.  New insights into the progression from cutaneous lupus to systemic lupus erythematosus , 2020, Expert review of clinical immunology.

[57]  D. Lipsker,et al.  Efficacy and safety of low‐dose oral lenalidomide in refractory cutaneous lupus erythematosus: an open series of 19 cases , 2020, Journal of the European Academy of Dermatology and Venereology : JEADV.

[58]  J. Wenzel,et al.  Cutaneous lupus erythematosus: The impact of self‐amplifying innate and adaptive immune responses and future prospects of targeted therapies , 2020, Experimental dermatology.

[59]  J. Richmond,et al.  Current Insights in Cutaneous Lupus Erythematosus Immunopathogenesis , 2020, Frontiers in Immunology.

[60]  W. Stohl,et al.  Belimumab and Rituximab in Systemic Lupus Erythematosus: A Tale of Two B Cell-Targeting Agents , 2020, Frontiers in Medicine.

[61]  J. Guthridge,et al.  SAT0187 DISCRIMINATION OF SYSTEMIC LUPUS (SLE) PATIENTS WITH CLINICAL RESPONSE TO OBEXELIMAB (XMAB®5871) BASED ON A PATTERN OF IMMUNOLOGIC MARKERS , 2020 .

[62]  V. Descamps,et al.  Belimumab for refractory manifestations of cutaneous lupus: a multicenter, retrospective observational study of 16 patients. , 2020, Journal of the American Academy of Dermatology.

[63]  Q. Lu,et al.  An Update on the Pathogenesis of Skin Damage in Lupus , 2020, Current Rheumatology Reports.

[64]  Lauren Floyd,et al.  Cutaneous Lupus Erythematosus: Progress and Challenges , 2020, Current Allergy and Asthma Reports.

[65]  Q. Lu,et al.  Abnormal expression of BAFF and its receptors in peripheral blood and skin lesions from systemic lupus erythematosus patients , 2020, Autoimmunity.

[66]  J. Gudjonsson,et al.  Treatment of cutaneous lupus erythematosus: current approaches and future strategies. , 2020, Current opinion in rheumatology.

[67]  T. Bieber,et al.  Selective Janus Kinase 1 Inhibition Is a Promising Therapeutic Approach for Lupus Erythematosus Skin Lesions , 2020, Frontiers in Immunology.

[68]  T. Lihoreau,et al.  [Resistant and progressive cutaneous lupus erythematosus treated with belimumab: A retrospective monocentric study]. , 2020 .

[69]  G. Tobón,et al.  Cathelicidin LL-37: A new important molecule in the pathophysiology of systemic lupus erythematosus , 2019, Journal of translational autoimmunity.

[70]  F. Aubin,et al.  Lupus érythémateux cutanés réfractaires traités par bélimumab : étude descriptive monocentrique , 2019, La Revue de Médecine Interne.

[71]  I. Bruce,et al.  Trial of Anifrolumab in Active Systemic Lupus Erythematosus. , 2019, The New England journal of medicine.

[72]  M. Tomayko,et al.  A Niche for Plasma Cells: The Skin. , 2019, The Journal of investigative dermatology.

[73]  Hong-Wei Sun,et al.  Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus , 2019, Proceedings of the National Academy of Sciences.

[74]  D. Nassar,et al.  Investigating the presence of neutrophil extracellular traps in cutaneous lesions of different subtypes of lupus erythematosus , 2019, Experimental dermatology.

[75]  Qingrui Yang,et al.  The contribution of macrophages to systemic lupus erythematosus. , 2019, Clinical immunology.

[76]  J. Wenzel Cutaneous lupus erythematosus: new insights into pathogenesis and therapeutic strategies , 2019, Nature Reviews Rheumatology.

[77]  C. Gordon,et al.  2019 update of the EULAR recommendations for the management of systemic lupus erythematosus , 2019, Annals of the rheumatic diseases.

[78]  P. Auluck,et al.  Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus , 2019, The Journal of clinical investigation.

[79]  C. Bao,et al.  Type I interferons promote the survival and proinflammatory properties of transitional B cells in systemic lupus erythematosus patients , 2019, Cellular & Molecular Immunology.

[80]  Adam C. Labonte,et al.  Identification of alterations in macrophage activation associated with disease activity in systemic lupus erythematosus , 2018, PloS one.

[81]  D. Isenberg,et al.  Assessment of Response to B-Cell Depletion Using Rituximab in Cutaneous Lupus Erythematosus , 2018, JAMA dermatology.

[82]  V. Werth,et al.  Natural history of disease activity and damage in patients with cutaneous lupus erythematosus , 2018, Journal of the American Academy of Dermatology.

[83]  Andreas Radbruch,et al.  Proteasome inhibition with bortezomib induces a therapeutically relevant depletion of plasma cells in SLE but does not target their precursors , 2018, European journal of immunology.

[84]  James T. Elder,et al.  Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa , 2018, Annals of the rheumatic diseases.

[85]  K. Chan,et al.  TLR4+CXCR4+ plasma cells drive nephritis development in systemic lupus erythematosus , 2018, Annals of the Rheumatic Diseases.

[86]  T. Nomura,et al.  Analysis of possible structures of inducible skin‐associated lymphoid tissue in lupus erythematosus profundus , 2018, The Journal of dermatology.

[87]  K. Chanprapaph,et al.  Hair and Scalp Changes in Cutaneous and Systemic Lupus Erythematosus , 2018, American Journal of Clinical Dermatology.

[88]  S. Rahman,et al.  IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE , 2018, Nature Communications.

[89]  Jonathan H. Chung,et al.  Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. , 2018, JCI insight.

[90]  P. Degnan,et al.  Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus , 2018, Science Translational Medicine.

[91]  B. Diamond,et al.  Plasma Cell Differentiation Pathways in Systemic Lupus Erythematosus , 2018, Front. Immunol..

[92]  J. Wenzel,et al.  High expression of B lymphocyte stimulator in lesional keratinocytes of patients with cutaneous lupus erythematosus , 2018, Experimental dermatology.

[93]  D. Isenberg,et al.  Efficacy and Safety of Atacicept in Patients With Systemic Lupus Erythematosus , 2017, Arthritis & rheumatology.

[94]  V. Papayannopoulos Neutrophil extracellular traps in immunity and disease , 2017, Nature Reviews Immunology.

[95]  I. Bruce,et al.  The British Society for Rheumatology guideline for the management of systemic lupus erythematosus in adults , 2018, Rheumatology.

[96]  S. Sozzani,et al.  IL-21 May Promote Granzyme B-Dependent NK/Plasmacytoid Dendritic Cell Functional Interaction in Cutaneous Lupus Erythematosus. , 2017, The Journal of investigative dermatology.

[97]  T. Bieber,et al.  Immunostimulatory Endogenous Nucleic Acids Drive the Lesional Inflammation in Cutaneous Lupus Erythematosus. , 2017, The Journal of investigative dermatology.

[98]  J. O'dell,et al.  Belimumab for the treatment of recalcitrant cutaneous lupus , 2017, Lupus.

[99]  Meifeng Xu,et al.  TWEAK/Fn14 Activation Participates in Ro52-Mediated Photosensitization in Cutaneous Lupus Erythematosus , 2017, Front. Immunol..

[100]  S. Mohammadi,et al.  Immunomodulation in systemic lupus erythematosus: induction of M2 population in monocyte-derived macrophages by pioglitazone , 2017, Lupus.

[101]  J. Szepietowski,et al.  S2k guideline for treatment of cutaneous lupus erythematosus – guided by the European Dermatology Forum (EDF) in cooperation with the European Academy of Dermatology and Venereology (EADV) , 2017, Journal of the European Academy of Dermatology and Venereology : JEADV.

[102]  K. Kalunian,et al.  Anifrolumab, an Anti–Interferon‐α Receptor Monoclonal Antibody, in Moderate‐to‐Severe Systemic Lupus Erythematosus , 2017, Arthritis & rheumatology.

[103]  Jasmine N Stannard,et al.  Cutaneous lupus erythematosus: updates on pathogenesis and associations with systemic lupus , 2016, Current opinion in rheumatology.

[104]  T. Gambichler,et al.  Cutaneous characteristics and association with antinuclear antibodies in 402 patients with different subtypes of lupus erythematosus , 2016, Journal of the European Academy of Dermatology and Venereology : JEADV.

[105]  J. Wenzel,et al.  Advances in the treatment of cutaneous lupus erythematosus , 2016, Lupus.

[106]  T. Bieber,et al.  Spleen tyrosine kinase (SYK) is a potential target for the treatment of cutaneous lupus erythematosus patients , 2016, Experimental dermatology.

[107]  D. Isenberg,et al.  Efficacy and safety of subcutaneous tabalumab in patients with systemic lupus erythematosus: results from ILLUMINATE-1, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study , 2015, Annals of the rheumatic diseases.

[108]  Mindy S Lo Monogenic Lupus , 2016, Current Rheumatology Reports.

[109]  Jinhua Xu,et al.  Macrophage Polarization Modulates Development of Systemic Lupus Erythematosus , 2015, Cellular Physiology and Biochemistry.

[110]  T. Gambichler,et al.  FOXP3+ and CD39+ regulatory T cells in subtypes of cutaneous lupus erythematosus , 2015, Journal of the European Academy of Dermatology and Venereology : JEADV.

[111]  P. Emery,et al.  Brief Report: Responses to Rituximab Suggest B Cell–Independent Inflammation in Cutaneous Systemic Lupus Erythematosus , 2015, Arthritis & rheumatology.

[112]  J. Wenzel,et al.  Lupus erythematosus revisited , 2015, Seminars in Immunopathology.

[113]  V. Ruland,et al.  Influence of smoking on disease severity and antimalarial therapy in cutaneous lupus erythematosus: analysis of 1002 patients from the EUSCLE database , 2014, The British journal of dermatology.

[114]  M. Crow Type I Interferon in the Pathogenesis of Lupus , 2014, The Journal of Immunology.

[115]  A. Mak,et al.  The Pathology of T Cells in Systemic Lupus Erythematosus , 2014, Journal of immunology research.

[116]  K. Yancey,et al.  Differential expression of BAFF and its receptors in discoid lupus erythematosus patients. , 2014, Journal of dermatological science.

[117]  Y. Chu,et al.  T Follicular Helper Cells and Regulatory B Cells Dynamics in Systemic Lupus Erythematosus , 2014, PloS one.

[118]  A. Kuhn,et al.  Photosensitivity, Apoptosis, and Cytokines in the Pathogenesis of Lupus Erythematosus: a Critical Review , 2014, Clinical Reviews in Allergy & Immunology.

[119]  R. Maciuca,et al.  Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. , 2013, Arthritis and rheumatism.

[120]  A. Mak,et al.  Costimulatory Pathways: Physiology and Potential Therapeutic Manipulation in Systemic Lupus Erythematosus , 2013, Clinical & developmental immunology.

[121]  Laurens P. Kil,et al.  Aberrant B Cell Selection and Activation in Systemic Lupus Erythematosus , 2013, International reviews of immunology.

[122]  D. Isenberg,et al.  Invariant natural killer T cells are enriched at the site of cutaneous inflammation in lupus erythematosus. , 2013, Journal of dermatological science.

[123]  V. Werth,et al.  Cutaneous lupus erythematosus: diagnosis and treatment. , 2013, Best practice & research. Clinical rheumatology.

[124]  J. Karrich,et al.  IL-21-stimulated human plasmacytoid dendritic cells secrete granzyme B, which impairs their capacity to induce T-cell proliferation. , 2013, Blood.

[125]  K. Su,et al.  Neutrophil Extracellular Traps and Systemic Lupus Erythematosus. , 2013, Journal of clinical & cellular immunology.

[126]  A. Paiva,et al.  NK cells dysfunction in systemic lupus erythematosus: relation to disease activity , 2013, Clinical Rheumatology.

[127]  M. Cancro,et al.  Role of type I interferons in the activation of autoreactive B cells , 2012, Immunology and cell biology.

[128]  D. Ghosh,et al.  c-Jun and Ets2 Proteins Regulate Expression of Spleen Tyrosine Kinase in T Cells* , 2012, The Journal of Biological Chemistry.

[129]  M. Wittmann,et al.  Human keratinocytes express AIM2 and respond to dsDNA with IL‐1β secretion , 2011, Experimental dermatology.

[130]  M. Petri,et al.  A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. , 2011, Arthritis and rheumatism.

[131]  T. Gambichler,et al.  Expression of antimicrobial peptides in different subtypes of cutaneous lupus erythematosus. , 2011, Journal of the American Academy of Dermatology.

[132]  F. Granath,et al.  Cutaneous lupus erythematosus and the association with systemic lupus erythematosus: a population‐based cohort of 1088 patients in Sweden , 2011, The British journal of dermatology.

[133]  C-L Sun,et al.  LL-37 expression in the skin in systemic lupus erythematosus , 2011, Lupus.

[134]  Tomoki Ito,et al.  Neutrophils Activate Plasmacytoid Dendritic Cells by Releasing Self-DNA–Peptide Complexes in Systemic Lupus Erythematosus , 2011, Science Translational Medicine.

[135]  E. Meffre,et al.  In Situ B Cell-Mediated Immune Responses and Tubulointerstitial Inflammation in Human Lupus Nephritis , 2011, The Journal of Immunology.

[136]  T. Bieber,et al.  Evidence for a pathophysiological role of keratinocyte-derived type III interferon (IFNλ) in cutaneous lupus erythematosus. , 2011, The Journal of investigative dermatology.

[137]  R. Coffman,et al.  Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9 , 2010, The Journal of experimental medicine.

[138]  D. Kranz Faculty Opinions recommendation of Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. , 2010 .

[139]  James O. Jones,et al.  Suppression of Antitumor Immunity by Stromal Cells Expressing , 2022 .

[140]  W. Reeves,et al.  Monocyte and Macrophage Abnormalities in Systemic Lupus Erythematosus , 2010, Archivum Immunologiae et Therapiae Experimentalis.

[141]  Abdul Hakkim,et al.  Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis , 2010, Proceedings of the National Academy of Sciences.

[142]  G. Tsokos,et al.  IL-17 in Systemic Lupus Erythematosus , 2010, Journal of biomedicine & biotechnology.

[143]  M. Pippione,et al.  Identification of granzyme B‐expressing CD‐8‐positive T cells in lymphocytic inflammatory infiltrate in cutaneous lupus erythematosus and in dermatomyositis , 2009, Clinical and experimental dermatology.

[144]  Q. Lu,et al.  DNA demethylation of the perforin promoter in CD4(+) T cells from patients with subacute cutaneous lupus erythematosus. , 2009, Journal of dermatological science.

[145]  L. Cerroni,et al.  Cutaneous distribution of plasmacytoid dendritic cells in lupus erythematosus. Selective tropism at the site of epithelial apoptotic damage. , 2009, Immunobiology.

[146]  I. Ito,et al.  Lupus antibodies to the HMGB1 chromosomal protein: epitope mapping and association with disease activity , 2009, Modern rheumatology.

[147]  I. Gunnarsson,et al.  Increased proportion of CD56bright natural killer cells in active and inactive systemic lupus erythematosus , 2009, Immunology.

[148]  Daniel J. Muller,et al.  Narrow‐band UVB‐induced Externalization of Selected Nuclear Antigens in Keratinocytes: Implications for Lupus Erythematosus Pathogenesis † , 2009, Photochemistry and photobiology.

[149]  M. Oukka,et al.  Expanded Double Negative T Cells in Patients with Systemic Lupus Erythematosus Produce IL-17 and Infiltrate the Kidneys1 , 2008, The Journal of Immunology.

[150]  U. Panzer,et al.  Analysis and classification of B-cell infiltrates in lupus and ANCA-associated nephritis. , 2008, Kidney international.

[151]  J. Saurat,et al.  Neutrophilic Cutaneous Lupus Erythematosus , 2008, Dermatology.

[152]  T. Bieber,et al.  The expression pattern of interferon‐inducible proteins reflects the characteristic histological distribution of infiltrating immune cells in different cutaneous lupus erythematosus subsets , 2007, The British journal of dermatology.

[153]  T. Gambichler,et al.  Mycophenolate sodium for subacute cutaneous lupus erythematosus resistant to standard therapy , 2007, The British journal of dermatology.

[154]  A. Enk,et al.  Low number of regulatory T cells in skin lesions of patients with cutaneous lupus erythematosus. , 2007, Arthritis and rheumatism.

[155]  J. Wenzel,et al.  Identification of type I interferon‐associated inflammation in the pathogenesis of cutaneous lupus erythematosus opens up options for novel therapeutic approaches , 2007, Experimental dermatology.

[156]  G. Tsokos,et al.  Increased Levels of NF-ATc2 Differentially Regulate CD154 and IL-2 Genes in T Cells from Patients with Systemic Lupus Erythematosus1 , 2007, The Journal of Immunology.

[157]  A. Martin-Villalba,et al.  Accumulation of apoptotic cells in the epidermis of patients with cutaneous lupus erythematosus after ultraviolet irradiation. , 2006, Arthritis and rheumatism.

[158]  P. Quartier,et al.  Macrophages from patients with SLE and rheumatoid arthritis have defective adhesion in vitro, while only SLE macrophages have impaired uptake of apoptotic cells , 2005, Annals of the rheumatic diseases.

[159]  E. Reefman,et al.  Reduced uptake of apoptotic cells by macrophages in systemic lupus erythematosus: correlates with decreased serum levels of complement , 2005, Annals of the rheumatic diseases.

[160]  T. Bieber,et al.  Scarring skin lesions of discoid lupus erythematosus are characterized by high numbers of skin‐homing cytotoxic lymphocytes associated with strong expression of the type I interferon‐induced protein MxA , 2005, The British journal of dermatology.

[161]  A. Zlotnik,et al.  Ultraviolet radiation-induced injury, chemokines, and leukocyte recruitment: An amplification cycle triggering cutaneous lupus erythematosus. , 2005, Arthritis and rheumatism.

[162]  G. Trinchieri,et al.  Type I interferon dependence of plasmacytoid dendritic cell activation and migration , 2005, The Journal of experimental medicine.

[163]  T. Bieber,et al.  Enhanced type I interferon signalling promotes Th1‐biased inflammation in cutaneous lupus erythematosus , 2005, The Journal of pathology.

[164]  D. Golenbock,et al.  Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. , 2005, The Journal of clinical investigation.

[165]  Silvano Sozzani,et al.  The chemokine system in diverse forms of macrophage activation and polarization. , 2004, Trends in immunology.

[166]  F. Mackay,et al.  BAFF: A fundamental survival factor for B cells , 2002, Nature Reviews Immunology.

[167]  Antonio Lanzavecchia,et al.  BDCA-2, a Novel Plasmacytoid Dendritic Cell–specific Type II C-type Lectin, Mediates Antigen Capture and Is a Potent Inhibitor of Interferon α/β Induction , 2001, The Journal of experimental medicine.

[168]  Virginia Pascual,et al.  Induction of Dendritic Cell Differentiation by IFN-α in Systemic Lupus Erythematosus , 2001, Science.

[169]  P. Lipsky Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity , 2001, Nature Immunology.

[170]  F. Lund-Johansen,et al.  Plasmacytoid dendritic cells (natural interferon- alpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions. , 2001, The American journal of pathology.

[171]  G. Filaci,et al.  Impairment of CD8+ T Suppressor Cell Function in Patients with Active Systemic Lupus Erythematosus1 , 2001, The Journal of Immunology.

[172]  G. Tsokos,et al.  Molecular Basis of Deficient IL-2 Production in T Cells from Patients with Systemic Lupus Erythematosus1 , 2001, The Journal of Immunology.

[173]  V. Pascual,et al.  Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. , 2001, Science.

[174]  Y. Tokura,et al.  Keratinocytes from patients with lupus erythematosus show enhanced cytotoxicity to ultraviolet radiation and to antibody‐mediated cytotoxicity , 1999, Clinical and experimental immunology.

[175]  L. Lu,et al.  Major peptide autoepitopes for nucleosome-specific T cells of human lupus. , 1999, The Journal of clinical investigation.

[176]  W. Ouyang,et al.  Induction of interferon‐γ production in Th1 CD4+ T cells: evidence for two distinct pathways for promoter activation , 1999 .

[177]  H. Lorenz,et al.  Histone-specific Th0 and Th1 clones derived from systemic lupus erythematosus patients induce double-stranded DNA antibody production. , 1997, Arthritis and rheumatism.

[178]  K. Okumura,et al.  Expression of Fas ligand and its receptor in cutaneous lupus: implication in tissue injury. , 1997, Clinical immunology and immunopathology.

[179]  G. Tsokos,et al.  Pathogenic anti-DNA autoantibody-inducing T helper cell lines from patients with active lupus nephritis: isolation of CD4-8- T helper cell lines that express the gamma delta T-cell antigen receptor. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[180]  G. Tsokos,et al.  T cell receptor alpha/beta expressing double-negative (CD4-/CD8-) and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis. , 1989, Journal of immunology.

[181]  P. Stastny,et al.  Serologic and HLA associations in subacute cutaneous lupus erythematosus, a clinical subset of lupus erythematosus. , 1982, Annals of internal medicine.

[182]  M. Reichlin,et al.  Clinical and serological differences between systemic lupus erythematosus patients with antibodies to Ro versus patients with antibodies to Ro and La. , 1982, The Journal of clinical investigation.