Fatigue Behavior of PZT‐Based Nanocomposites with Fine Platinum Particles
暂无分享,去创建一个
K. Niihara | H. Hwang | M. Toriyama | M. Sando | K. Tajima
[1] K. Niihara,et al. In-situ fabrication of ceramic/Metal nanocomposites by reduction reaction in barium titanate–Metal oxide systems , 1998 .
[2] K. Niihara,et al. Low‐Temperature Sintering and High‐Strength Pb(Zr,Ti)O3‐Matrix Composites Incorporating Silver Particles , 1997 .
[3] K. Niihara,et al. Subcritical crack growth phenomenon and fractography of barium titanate and barium titanate-based composite , 1997 .
[4] Q. Jiang,et al. Grain size dependence of electric fatigue behavior of hot pressed PLZT ferroelectric ceramics , 1994 .
[5] Grady S. White,et al. Fracture Behavior of Cyclically Loaded PZT , 1994 .
[6] Anthony G. Evans,et al. Electric-field-induced fatigue crack growth in piezoelectrics , 1994 .
[7] Takenobu Sakai,et al. Durability of Piezoelectric Ceramics for an Actuator , 1992 .
[8] Zhigang Suo,et al. Fracture mechanics for piezoelectric ceramics , 1992 .
[9] K. Niihara. New Design Concept of Structural Ceramics , 1991 .
[10] Andrew P. Ritter,et al. Designing Cofired Multilayer Electrostrictive Actuators for Reliability , 1989 .
[11] Y. Choa,et al. Effects of Second Phase Dispersions on Microstructure and Mechanical Properties in MgO/SiC Nanocomposites , 1998 .
[12] K. Niihara,et al. Perovskite-type BaTiO3 ceramics containing particulate SiC: Part II Microstructure and mechanical properties , 1998 .
[13] K. Niihara,et al. Particle/Matrix Interface and Its Role in Creep Inhibition in Alumina/Silicon Carbide Nanocomposites , 1996 .