A review on the clad failure studies

Abstract In this paper, an attempt has been made to systematically organize the research investigations conducted on clad tube failure, so far. Before presenting the review on the clad failure studies, an introduction to different clad materials has been added, in which the effect of alloying elements on the material properties have been presented. The literature on clad failure has been broadly categorized under the headings LOCA and RIA. The failure mechanisms like creep, corrosion and pellet–clad interaction have been discussed in details. Each subsection of the review has been provided with summary table, in which the studies are arranged in the chronological order. A small section on acceptance criteria for ECCS has also been included. The last section of the review has been dedicated to the core-degradation phenomena.

[1]  S. McIntyre,et al.  A Study of the Hydrogen Uptake Mechanism in Zirconium Alloys , 1994 .

[2]  K. Hannerz,et al.  Zircaloy cladding mechanical properties , 1975 .

[3]  Shinsuke Yamanaka,et al.  Study on the hydrogen solubility in zirconium alloys , 1997 .

[4]  W. R. Clendening,et al.  Steady-state creep of zircaloy-4 fuel cladding from 940 to 1873 K , 1979 .

[5]  Ed Hindle,et al.  An Experimental Study of the Deformation of Zircaloy PWR Fuel Rod Cladding Under Mainly Convective Cooling , 1982 .

[6]  J. F. White,et al.  Failure of Pressurized Zircaloy Tubes During Thermal Excursions in Steam and in Inert Atmospheres , 1969 .

[7]  Michel Bornert,et al.  Characterization of Local Strain Distribution in Zircaloy-4 and M5® Alloys , 2008 .

[8]  Sangdae Lee,et al.  Circumferential creep properties of stress-relieved Zircaloy-4 and Zr–Nb–Sn–Fe cladding tubes , 2009 .

[9]  Bo Cheng,et al.  In-Core Tests of Effects of BWR Water Chemistry Impurities on Zircaloy Corrosion , 2005 .

[10]  J. Birchley,et al.  Core melt down and vessel failure: a coupled problem , 1999 .

[11]  Fj Erbacher,et al.  Zircaloy Fuel Cladding Behavior in a Loss-of-Coolant Accident: A Review , 1987 .

[12]  G Hofmann,et al.  Zirconium Cladding Deformation in a Steam Environment with Transient Heating , 1979 .

[13]  Toyoshi Fuketa,et al.  Behavior of High Burn-up Fuel Cladding under LOCA Conditions , 2009 .

[14]  Jean Senevat,et al.  Influence of Composition and Fabrication Process on Out-of-Pile and In-Pile Properties of M5 Alloy , 2000 .

[15]  Steinar Aas,et al.  Mechanical interaction between fuel and cladding , 1971 .

[16]  John Paul Foster,et al.  ZIRLO TM Cladding Improvement , 2008 .

[17]  Brent J. Lewis,et al.  Overview of high-temperature fuel behaviour with relevance to CANDU fuel , 2009 .

[18]  Jacques Besson,et al.  Behavior and failure of uniformly hydrided Zircaloy-4 fuel claddings between 25 °C and 480 °C under various stress states, including RIA loading conditions , 2010 .

[19]  Satoru Kawasaki,et al.  Failure-Bearing Capability of Oxidized Zircaloy-4 Cladding under Simulated Loss-of-Coolant Condition , 1983 .

[20]  Tennyson Smith,et al.  DIFFUSION COEFFICIENTS AND ANION VACANCY CONCENTRATIONS FOR THE ZIRCONIUM- ZIRCONIUM DIOXIDE SYSTEM , 1965 .

[21]  Martin Steinbrück,et al.  Air oxidation of Zircaloy-4, M5® and ZIRLO™ cladding alloys at high temperatures , 2011 .

[22]  Lars Hallstadius,et al.  Advanced Zirconium Alloy for PWR Application , 2010 .

[23]  Didier Hamon,et al.  Investigations of the Microstructure and Mechanical Properties of Prior-β Structure as a Function of the Oxygen Content in Two Zirconium Alloys , 2008 .

[24]  C.R.F. Azevedo,et al.  Selection of fuel cladding material for nuclear fission reactors , 2011 .

[25]  H. E. Rosinger,et al.  The effect of circumferential temperature variation on fuel-cladding failure , 1985 .

[26]  B Lustman,et al.  Zirconium Technology—Twenty Years of Evolution , 1979 .

[27]  A. V. Nikulina,et al.  Zirconium alloys in nuclear power engineering , 2004 .

[28]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  P Hofmann,et al.  Experimental and Theoretical Results of Cladding Oxidation Under Severe Fuel-Damage Conditions , 1987 .

[30]  C. E. Coleman,et al.  Simulating the Behavior of Zirconium-Alloy Components in Nuclear Reactors , 2002 .

[31]  S. Hagen,et al.  LWR fuel rod behavior during severe accidents , 1987 .

[32]  Toshimasa Aoki,et al.  Behavior of Cladding Tube under Coolant-Loss Accident Conditions , 1966 .

[33]  Hee M. Chung FUEL BEHAVIOR UNDER LOSS-OF-COOLANT ACCIDENT SITUATIONS , 2005 .

[34]  Satoru Kawasaki,et al.  Embrittlement of zircaloy-4 due to oxidation in environment of stagnant steam. , 1982 .

[35]  Clément Lemaignan,et al.  A thermodynamic database for zirconium alloys , 1999 .

[36]  Chang-Sung Seok,et al.  High temperature deformation characteristics of Zirlo™ tubing via ring-creep and burst tests , 2011 .

[37]  Yong Hwan Jeong,et al.  Deformation of Zircaloy-4 cladding during a LOCA transient up to 1200 °C , 2004 .

[38]  Dd Davis,et al.  Fuel Rod Deformation in LOCA and Severe Core Damage Accidents , 1984 .

[39]  F. J. Erbacher,et al.  Studies on Zircaloy Fuel Clad Ballooning in a Loss-of-Coolant Accident—Results of Burst Tests with Indirectly Heated Fuel Rod Simulators , 1979 .

[40]  B. Cox,et al.  Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys , 2005 .

[41]  Woo Seog Ryu,et al.  Elongation minimum and strain rate sensitivity minimum of zircaloy-4 , 1983 .

[42]  He Sills,et al.  Deformation and Failure of Zircaloy Fuel Sheaths Under LOCA Conditions , 1984 .

[43]  Hideo Maki,et al.  Behavior of Zircaloy Fuel Cladding Tubes , 1976 .

[44]  W. J. Gallagher,et al.  Tube-burst response of irradiated Zircaloy spent-fuel cladding , 1979 .

[45]  D. O. Pickman,et al.  Properties of zircaloy cladding , 1971 .

[46]  D. W. Shannon EFFECT OF OXIDATION RATE ON HYDRIDING OF ZIRCONIUM ALLOYS IN GAS MIXTURES CONTAINING HYDROGEN , 1963 .

[47]  Sun Ig Hong,et al.  Temperature dependence of elongation in Zircaloy-4 , 1987 .

[48]  Earl A. Gulbransen,et al.  Reaction of Hydrogen with Preoxidized Zircaloy‐2 at 300° to 400°C , 1957 .

[49]  Heinz Stehle,et al.  Behavior and Properties of Zircaloys in Power Reactors: A Short Review of Pertinent Aspects in LWR Fuel , 1996 .

[50]  George Paul Sabol,et al.  ZIRLO™ — An Alloy Development Success , 2005 .

[51]  H. Motohashi,et al.  Products at the surface of zircaloy cladding under loca conditions , 1980 .

[52]  R. Krishnan,et al.  Zirconium alloys in nuclear technology , 1981, Proceedings of the Indian Academy of Sciences Section C: Engineering Sciences.

[53]  F. J. Erbacher,et al.  Burst criterion of Zircaloy fuel claddings in a loss-of-coolant accident , 1982 .

[54]  H. E. Rosinger A model to predict the failure of zircaloy-4 fuel sheathing during postulated loca conditions , 1984 .

[55]  Kenji Yoshida,et al.  Failure Correlation for Zircaloy-2 Fuel Cladding under High Temperature Transient Conditions , 1987 .

[56]  Satoru Kawasaki,et al.  Zircaloy-Clad Fuel Rod Burst Behavior under Simulated Loss-of-Coolant Condition in Pressurized Water Reactors , 1978 .

[57]  Kwang-Wook Kim,et al.  Ductility and strain rate sensitivity of Zircaloy-4 nuclear fuel claddings , 2001 .

[58]  David Pickman Zirconium Alloy Performance in Light Water Reactors: A Review of UK and Scandinavian Experience , 1994 .

[59]  Shinsuke Yamanaka,et al.  HYDROGEN SOLUBILITY IN ZIRCONIUM ALLOYS , 1995 .

[60]  J. C. Brachet,et al.  Experimental determination of creep properties of Zirconium alloys together with phase transformation , 2004 .

[61]  A Sawatzky A proposed criterion for the oxygen embrittlement of Zircaloy-4 fuel cladding , 1979 .

[62]  Satoru Kawasaki,et al.  Estimation of Conservatism of Present Embrittlement Criteria for Zircaloy Fuel Cladding Under LOCA , 1984 .

[63]  Korukonda L. Murty,et al.  Short-term rupture studies of Zircaloy-4 and Nb-modified Zircaloy-4 tubing using closed-end internal pressurization , 2004 .

[64]  C. Lemaignan,et al.  Deformation-corrosion interactions for Zr alloys during I-SCC crack initiation. Part I: Chemical contributions , 1999 .

[65]  J. R. Morris,et al.  A Study of Zircaloy-2 Corrosion in High Temperature Water Using Ion Beam Methods , 1981 .

[66]  Stanley Kass,et al.  The Development of the Zircaloys , 1964 .

[67]  Holger Teichel,et al.  How the European Pressurised Water Reactor fulfils the utility requirements , 1999 .

[68]  P. Sidky,et al.  Iodine stress corrosion cracking of Zircaloy reactor cladding : Iodine chemistry (a review) , 1998 .

[69]  N. S. McIntyre,et al.  Oxide Characteristics and Their Relationship to Hydrogen Uptake in Zirconium Alloys , 1991 .

[70]  P Hofmann,et al.  Current knowledge on core degradation phenomena, a review , 1999 .

[71]  Al Lowe,et al.  Development of a Closed-End Burst Test Procedure for Zircaloy Tubing , 1974 .

[72]  William T. Thompson,et al.  Modelling of iodine-induced stress corrosion cracking in CANDU fuel , 2011 .

[73]  Jun Hwan Kim,et al.  Effects of oxide and hydrogen on the behavior of Zircaloy-4 cladding during the loss of the coolant accident (LOCA) , 2006 .

[74]  J. R. Matthews The effect of anisotropy on the ballooning of zircaloy cladding , 1984 .

[75]  Kuruvilla Verghese,et al.  Tritium diffusion in zircaloy-2 in the temperature range −78 to 204° C , 1974 .

[76]  He Sills,et al.  Predicting High-Temperature Transient Deformation from Microstructural Models , 1979 .

[77]  A. Bement,et al.  Creep of Zirconium from 50 to 850 C , 1969 .