A Porous TiO2 Electrode Prepared by an Energy Efficient Pyro-Synthesis for Advanced Lithium-Ion Batteries

Cappearstocontributetoitsimpressiveelectrochemicallithiumstorageproperties among the prepared electrodes. The pyro-synthetic strategy aids in developing nanostructured battery electrodes withporous morphologies and appears to offer promise for being developed as an energy saving process for large-scale applications.© The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative CommonsAttribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/),whichpermitsnon-commercialreuse,distribution,andreproductioninanymedium,providedtheoriginalworkisnotchangedinanyway and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. [DOI: 10.1149/2.0511507jes]All rights reserved.Manuscript submitted February 2, 2015; revised manuscript received March 29, 2015. Published April 8, 2015.

[1]  Hak-Soo Lee,et al.  Synthesis of Nanocrystalline TiO 2 by Sol-Gel Combustion Hybrid Method and Its Application to Dye Solar Cells , 2008 .

[2]  Min Gyu Kim,et al.  Tio2@Sn core–shell nanotubes for fast and high density Li-ion storage material , 2008 .

[3]  Alok Kumar Rai,et al.  High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries , 2012 .

[4]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[5]  T. Jacobsen,et al.  Lithium insertion in different TiO2 modifications , 1988 .

[6]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[7]  T. Kulova,et al.  Products of lithium interaction with nanostructured oxides SnO2-TiO2 and mechanism of charge-discharge of electrodes in a lithium-ion battery , 2006 .

[8]  Xiaowei Zhao,et al.  Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. , 2011, Journal of the American Chemical Society.

[9]  D. Wexler,et al.  Amorphous Carbon Coated High Grain Boundary Density Dual Phase Li4Ti5O12‐TiO2: A Nanocomposite Anode Material for Li‐Ion Batteries , 2011 .

[10]  L. Stievano,et al.  Study of the insertion mechanism of lithium into anatase by operando X-ray diffraction and absorption spectroscopy , 2014 .

[11]  Robert Dominko,et al.  Wired Porous Cathode Materials: A Novel Concept for Synthesis of LiFePO4 , 2007 .

[12]  K. Kaneko Determination of pore size and pore size distribution1. Adsorbents and catalysts , 1994 .

[13]  D. Murphy,et al.  Ternary LixTiO2 phases from insertion reactions , 1983 .

[14]  J. Gim,et al.  Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries , 2014, Scientific Reports.

[15]  W. Tremel,et al.  Carbon-Coated Anatase TiO2 Nanotubes for Li- and Na-Ion Anodes , 2015 .

[16]  W. Tremel,et al.  Stabilizing nanostructured lithium insertion materials via organic hybridization: A step forward towards high-power batteries , 2014 .

[17]  G. F. Ortiz,et al.  Nanoarchitectured TiO2/SnO: A Future Negative Electrode for High Power Density Li-Ion Microbatteries? , 2010 .

[18]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[19]  T. Tatsumi,et al.  Preparation of Wormhole-like Mesoporous TiO2 with an Extremely Large Surface Area and Stabilization of Its Surface by Chemical Vapor Deposition , 2002 .

[20]  Jinlong Zhang,et al.  Synthesis of thermally stable mesoporous TiO2 and investigation of its photocatalytic activity , 2008 .

[21]  Poulomi Roy,et al.  Nanostructured anode materials for lithium ion batteries , 2015 .

[22]  J. Tarascon,et al.  Electrochemical lithium reactivity with nanotextured anatase-type TiO2 , 2005 .

[23]  G. F. Ortiz,et al.  Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes , 2009 .

[24]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[25]  Rita Baddour-Hadjean,et al.  Raman microspectrometry applied to the study of electrode materials for lithium batteries. , 2010, Chemical reviews.

[26]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[27]  Ugo Lafont,et al.  In Situ Structural Changes upon Electrochemical Lithium Insertion in Nanosized Anatase TiO2 , 2010 .

[28]  A. Rai,et al.  Enhanced Storage Capacities in Carbon-Coated Triclinic-LiVOPO4 Cathode with Porous Structure for Li-Ion Batteries , 2012 .

[29]  Arumugam Manthiram,et al.  Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage , 2011 .

[30]  W. Schuhmann,et al.  In situ visualization of Li-ion intercalation and formation of the solid electrolyte interphase on TiO2 based paste electrodes using scanning electrochemical microscopy. , 2013, Chemical communications.

[31]  Dong‐Wan Kim,et al.  Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries , 2010, Nanotechnology.

[32]  Jihua Chen,et al.  Porous TiO2/C nanocomposite shells as a high-performance anode material for lithium-ion batteries. , 2013, ACS applied materials & interfaces.

[33]  P. Bruce,et al.  TiO2‐(B) Nanotubes as Anodes for Lithium Batteries: Origin and Mitigation of Irreversible Capacity , 2012 .

[34]  Nupur Nikkan Sinha,et al.  High Rate Capability of a Dual-Porosity LiFePO4/C Composite , 2010 .

[35]  Zongping Shao,et al.  Facile Synthesis of Nanocrystalline TiO2 Mesoporous Microspheres for Lithium-Ion Batteries , 2011 .

[36]  D. Zhao,et al.  Mesoporous titania: From synthesis to application , 2012 .

[37]  Young‐Jun Kim,et al.  Preparation of carbon-coated TiO2 nanostructures for lithium-ion batteries , 2011 .

[38]  Jiayan Luo,et al.  Ordered Mesoporous Spinel LiMn2O4 by a Soft-Chemical Process as a Cathode Material for Lithium-Ion Batteries , 2007 .

[39]  M. Wohlfahrt‐Mehrens,et al.  Mesoporous Anatase TiO2 Electrodes Modified by Metal Deposition: Electrochemical Characterization and High Rate Performances , 2010 .

[40]  Christopher S. Johnson,et al.  Autogenic reactions for preparing carbon-encapsulated, nanoparticulate TiO2 electrodes for lithium-ion batteries , 2010 .

[41]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[42]  Robert Dominko,et al.  Impact of LiFePO4 ∕ C Composites Porosity on Their Electrochemical Performance , 2005 .

[43]  Andreas Stein,et al.  Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites , 1999 .

[44]  W. Kim,et al.  Ag or Au Nanoparticle-Embedded One-Dimensional Composite TiO2 Nanofibers Prepared via Electrospinning for Use in Lithium-Ion Batteries , 2010 .

[45]  Jong-ho Park,et al.  Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route , 2003 .

[46]  A. J. Frank,et al.  Pseudocapacitive Lithium-Ion Storage in Oriented Anatase TiO2 Nanotube Arrays , 2012 .

[47]  P. Bruce,et al.  Influence of size on the rate of mesoporous electrodes for lithium batteries. , 2010, Journal of the American Chemical Society.

[48]  M. Wohlfahrt‐Mehrens,et al.  High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. , 2012, Chemical Society reviews.

[49]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[50]  L. Österlund,et al.  Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol , 2002 .

[51]  M. S. Hegde,et al.  Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2 , 2004 .

[52]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[53]  J. Gim,et al.  A high voltage LiMnPO4–LiMn2O4 nanocomposite cathode synthesized by a one-pot pyro synthesis for Li-ion batteries , 2013 .

[54]  Docheon Ahn,et al.  Pyro-Synthesis of Functional Nanocrystals , 2012, Scientific Reports.

[55]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[56]  M. Winter,et al.  Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes , 2012 .

[57]  J. Dahn,et al.  Active/Inactive Nanocomposites as Anodes for Li ‐ Ion Batteries , 1999 .

[58]  A. Gedanken,et al.  Selective synthesis of anatase and rutile via ultrasound irradiation , 2000 .

[59]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[60]  Y. Lei,et al.  Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3 , 2001 .

[61]  B. Chowdari,et al.  Metal oxides and oxysalts as anode materials for Li ion batteries. , 2013, Chemical reviews.

[62]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[63]  A. Rai,et al.  Self-assembled mesoporous manganese oxide with high surface area by ambient temperature synthesis and its enhanced electrochemical properties , 2011 .

[64]  Francesco De Angelis,et al.  Review on recent progress of nanostructured anode materials for Li-ion batteries , 2014 .

[65]  Hun‐Gi Jung,et al.  Mesoporous TiO2 nano networks: Anode for high power lithium battery applications , 2009 .

[66]  Xiaoying Shi,et al.  Synthesis of biomorphological mesoporous TiO2 templated by mimicking bamboo membrane in supercritical CO2. , 2007, Journal of colloid and interface science.

[67]  M. Winter,et al.  Transition-Metal-Doped Zinc Oxide Nanoparticles as a New Lithium-Ion Anode Material , 2013 .

[68]  J. Gim,et al.  A rapid polyol combustion strategy towards scalable synthesis of nanostructured LiFePO4/C cathodes for Li-ion batteries , 2014, Journal of Solid State Electrochemistry.

[69]  J. Gim,et al.  Particle Size Effect of Anatase TiO2 Nanocrystals for Lithium-Ion Batteries , 2011 .

[70]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[71]  Ya‐Ping Sun,et al.  Formation of Nanocrystalline Titanium Dioxide in Perfluorinated Ionomer Membrane , 2002 .

[72]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[73]  B. Chowdari,et al.  Effect of 0.5 M NaNO3: 0.5 M KNO3 and 0.88 M LiNO3:0.12 M LiCl Molten Salts, and Heat Treatment on Electrochemical Properties of TiO2 , 2012 .

[74]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.