The collection 6 MODIS active fire detection algorithm and fire products

[1]  C. Justice,et al.  Potential global fire monitoring from EOS‐MODIS , 1998 .

[2]  D. Roy,et al.  Achieving sub-pixel geolocation accuracy in support of MODIS land science , 2002 .

[3]  D. Roy,et al.  An overview of MODIS Land data processing and product status , 2002 .

[4]  J. Townshend,et al.  Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm , 2003 .

[5]  M. Wooster,et al.  Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. , 2003 .

[6]  Yoram J. Kaufman,et al.  An Enhanced Contextual Fire Detection Algorithm for MODIS , 2003 .

[7]  M. Wooster,et al.  Boreal forest fires burn less intensely in Russia than in North America , 2004 .

[8]  G. Roberts,et al.  Retrieval of biomass combustion rates and totals from fire radiative power observations: Application to southern Africa using geostationary SEVIRI imagery , 2005 .

[9]  Yoram J. Kaufman,et al.  A method to derive smoke emission rates from MODIS fire radiative energy measurements , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[10]  C. Justice,et al.  Validation of the MODIS active fire product over Southern Africa with ASTER data , 2005 .

[11]  C. Justice,et al.  Agricultural burning in the Southeastern United States detected by MODIS , 2005 .

[12]  Jeffrey T. Morisette,et al.  Validation of active fire detection from moderate-resolution satellite sensors: the MODIS example in northern eurasia , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[13]  G. Roberts,et al.  Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission (2001–2004) , 2006 .

[14]  F. Achard,et al.  Ecology: Human role in Russian wild fires , 2006, Nature.

[15]  Lorraine A. Remer,et al.  Reversal of trend of biomass burning in the Amazon , 2007 .

[16]  Yongqiang Liu,et al.  An improved algorithm for small and cool fire detection using MODIS data: A preliminary study in the southeastern United States , 2007 .

[17]  S. Freitas,et al.  The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 2: Model sensitivity to the biomass burning inventories , 2007 .

[18]  C. Justice,et al.  Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER) , 2008 .

[19]  H. D. Klerk A pragmatic assessment of the usefulness of the MODIS (Terra and Aqua) 1-km active fire (MOD14A2 and MYD14A2) products for mapping fires in the fynbos biome , 2008 .

[20]  C. Justice,et al.  Global characterization of fire activity: toward defining fire regimes from Earth observation data , 2008 .

[21]  Susan I. Stewart,et al.  Detection rates of the MODIS active fire product in the United States , 2008 .

[22]  D. Morton,et al.  Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data , 2008 .

[23]  Ivan Csiszar,et al.  Short-Term Observations of the Temporal Development of Active Fires From Consecutive Same-Day ETM+ and ASTER Imagery in the Amazon: Implications for Active Fire Product Validation , 2008, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[24]  J. Randerson,et al.  Assessing variability and long-term trends in burned area by merging multiple satellite fire products , 2009 .

[25]  Jaakko Kukkonen,et al.  An operational system for the assimilation of the satellite information on wild-land fires for the needs of air quality modelling and forecasting , 2009 .

[26]  W. Schroeder,et al.  Comment on “Reversal of trend of biomass burning in the Amazon” by Ilan Koren, Lorraine A. Remer, and Karla Longo , 2009 .

[27]  Sundar A. Christopher,et al.  Global Monitoring and Forecasting of Biomass-Burning Smoke: Description of and Lessons From the Fire Locating and Modeling of Burning Emissions (FLAMBE) Program , 2009, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[28]  R. Colditz,et al.  Operational active fire mapping and burnt area identification applicable to Mexican Nature Protection Areas using MODIS and NOAA-AVHRR direct readout data , 2009 .

[29]  Kiyoshi Honda,et al.  MODIS Hotspot Validation over Thailand , 2009, Remote. Sens..

[30]  Yongqiang Liu,et al.  Analysis of the moderate resolution imaging spectroradiometer contextual algorithm for small fire detection , 2009 .

[31]  W. Schroeder,et al.  On the use of fire radiative power, area, and temperature estimates to characterize biomass burning via moderate to coarse spatial resolution remote sensing data in the Brazilian Amazon , 2010 .

[32]  S. K. Akagi,et al.  The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning , 2010 .

[33]  Lars Bromley,et al.  Relating violence to MODIS fire detections in Darfur, Sudan , 2010 .

[34]  M. Razinger,et al.  Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power , 2011 .

[35]  Zhanqing Li,et al.  6273 – 6293 Enhancement of a fire-detection algorithm by eliminating solar contamination effects and atmospheric path radiance : application to MODIS data , 2012 .

[36]  G. Roberts,et al.  Addressing the spatiotemporal sampling design of MODIS to provide estimates of the fire radiative energy emitted from Africa , 2011 .

[37]  C. Justice,et al.  Vegetation fires in the himalayan region – Aerosol load, black carbon emissions and smoke plume heights , 2012 .

[38]  T. Nightingale,et al.  Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets , 2012 .

[39]  E. Chuvieco,et al.  Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence , 2013 .

[40]  A. Edwards,et al.  Sensitivity of the MODIS fire detection algorithm (MOD14) in the savanna region of the Northern Territory, Australia , 2013 .

[41]  J. Rogan,et al.  Evaluating MODIS active fire products in subtropical Yucatán forest , 2013 .

[42]  J. Randerson,et al.  Satellite observations of terrestrial water storage provide early warning information about drought and fire season severity in the Amazon , 2013 .

[43]  Jun Wang,et al.  A sub-pixel-based calculation of fire radiative power from MODIS observations: 2. Sensitivity analysis and potential fire weather application , 2013 .

[44]  W. Schroeder,et al.  The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment , 2014 .

[45]  Jun Wang,et al.  Quantifying the potential for high‐altitude smoke injection in the North American boreal forest using the standard MODIS fire products and subpixel‐based methods , 2014 .

[46]  D. Roy,et al.  Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite‐based active fire characterization and biomass burning estimation , 2014 .

[47]  C. Justice,et al.  Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results , 2014 .

[48]  L. Giglio MODIS Collection 6 Active Fire Product User's Guide Revision A , 2015 .