Noncanonical open reading frames encode functional proteins essential for cancer cell survival

[1]  M. Mann,et al.  Pervasive functional translation of noncanonical human open reading frames , 2020, Science.

[2]  Maxim N. Shokhirev,et al.  Accurate annotation of human protein-coding small open reading frames , 2019, Nature Chemical Biology.

[3]  James C. Wright,et al.  Discovery of high-confidence human protein-coding genes and exons by whole-genome PhyloCSF helps elucidate 118 GWAS loci , 2019, Genome research.

[4]  Catherine L. Worth,et al.  The Translational Landscape of the Human Heart , 2019, Cell.

[5]  S. Salzberg,et al.  CHESS: a new human gene catalog curated from thousands of large-scale RNA sequencing experiments reveals extensive transcriptional noise , 2018, Genome Biology.

[6]  A. Chinnaiyan,et al.  MiPanda: A Resource for Analyzing and Visualizing Next-Generation Sequencing Transcriptomics Data , 2018, Neoplasia.

[7]  Rajiv Narayan,et al.  The GCTx format and cmap{Py, R, M, J} packages: resources for optimized storage and integrated traversal of annotated dense matrices , 2018, Bioinform..

[8]  G. Omenn,et al.  Progress on Identifying and Characterizing the Human Proteome: 2018 Metrics from the HUPO Human Proteome Project. , 2018, Journal of proteome research.

[9]  Shannon E. Mullican,et al.  Uniting GDF15 and GFRAL: Therapeutic Opportunities in Obesity and Beyond , 2018, Trends in Endocrinology & Metabolism.

[10]  Jonathan M. Mudge,et al.  Nearly all new protein-coding predictions in the CHESS database are not protein-coding , 2018, bioRxiv.

[11]  C. Scrideli,et al.  Distinct response to GDF15 knockdown in pediatric and adult glioblastoma cell lines , 2018, Journal of neuro-oncology.

[12]  D. Root,et al.  Pooled Lentiviral‐Delivery Genetic Screens , 2018, Current protocols in molecular biology.

[13]  V. W. Tsai,et al.  Targeting Obesity and Cachexia: Identification of the GFRAL Receptor-MIC-1/GDF15 Pathway. , 2017, Trends in molecular medicine.

[14]  Lily Yang,et al.  Growth differentiation factor 15 mediates epithelial mesenchymal transition and invasion of breast cancers through IGF-1R-FoxM1 signaling , 2017, Oncotarget.

[15]  M. Dillhoff,et al.  NF-κB regulates GDF-15 to suppress macrophage surveillance during early tumor development. , 2017, The Journal of clinical investigation.

[16]  David Robinson,et al.  Declutter your R workflow with tidy tools , 2017, PeerJ Prepr..

[17]  Ann E. Sizemore,et al.  Computational correction of copy-number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells , 2017, Nature Genetics.

[18]  Sudhir Kumar,et al.  TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. , 2017, Molecular biology and evolution.

[19]  Angela N. Brooks,et al.  A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles , 2017, Cell.

[20]  Howard Y. Chang,et al.  NONCODING RNA: CRISPRi‐based genome‐scale identification of functional long noncoding RNA loci in human cells , 2017 .

[21]  Matthew C. Canver,et al.  Analyzing CRISPR genome-editing experiments with CRISPResso , 2016, Nature Biotechnology.

[22]  D. Tautz,et al.  No Evidence for Phylostratigraphic Bias Impacting Inferences on Patterns of Gene Emergence and Evolution , 2016, bioRxiv.

[23]  T. Golub,et al.  High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines , 2016, Nature Biotechnology.

[24]  Uwe Ohler,et al.  Detecting actively translated open reading frames in ribosome profiling data , 2015, Nature Methods.

[25]  Meagan E. Sullender,et al.  Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 , 2015, Nature Biotechnology.

[26]  A. Regev,et al.  Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs , 2015, Genome Biology.

[27]  A. Regev,et al.  Many lncRNAs, 5’UTRs, and pseudogenes are translated and some are likely to express functional proteins , 2015, eLife.

[28]  Sebastian D. Mackowiak,et al.  Extensive identification and analysis of conserved small ORFs in animals , 2015, Genome Biology.

[29]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[30]  S. Dhanasekaran,et al.  The landscape of long noncoding RNAs in the human transcriptome , 2015, Nature Genetics.

[31]  Shu-Bing Qian,et al.  Quantitative profiling of initiating ribosomes in vivo , 2014, Nature Methods.

[32]  B. Shen,et al.  A proteogenomics approach integrating proteomics and ribosome profiling increases the efficiency of protein identification and enables the discovery of alternative translation start sites , 2014, Proteomics.

[33]  Yixue Li,et al.  Integration of mass spectrometry and RNA‐Seq data to confirm human ab initio predicted genes and lncRNAs , 2014, Proteomics.

[34]  David T. Jones,et al.  DISOPRED3: precise disordered region predictions with annotated protein-binding activity , 2014, Bioinform..

[35]  Nicholas T Ingolia,et al.  Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. , 2014, Cell reports.

[36]  B. Kuster,et al.  Mass-spectrometry-based draft of the human proteome , 2014, Nature.

[37]  Gary D Bader,et al.  A draft map of the human proteome , 2014, Nature.

[38]  M. Albà,et al.  Long non-coding RNAs as a source of new peptides , 2014, eLife.

[39]  Nikolaus Rajewsky,et al.  Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation , 2014, The EMBO journal.

[40]  Jiao Ma,et al.  Discovery of Human sORF-Encoded Polypeptides (SEPs) in Cell Lines and Tissue , 2014, Journal of proteome research.

[41]  Jin-Soo Kim,et al.  Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases , 2014, Bioinform..

[42]  Tao Zhang,et al.  Systematic analysis of missing proteins provides clues to help define all of the protein-coding genes on human chromosome 1. , 2014, Journal of proteome research.

[43]  M. Huss,et al.  HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics , 2013, Nature Methods.

[44]  J. Levin,et al.  Chemoproteomic discovery of cysteine-containing human short open reading frames. , 2013, Journal of the American Chemical Society.

[45]  François-Michel Boisvert,et al.  Direct Detection of Alternative Open Reading Frames Translation Products in Human Significantly Expands the Proteome , 2013, PloS one.

[46]  Michael Q. Zhang,et al.  Epigenomic Analysis of Multilineage Differentiation of Human Embryonic Stem Cells , 2013, Cell.

[47]  John S. Mattick,et al.  Pinstripe: a suite of programs for integrating transcriptomic and proteomic datasets identifies novel proteins and improves differentiation of protein-coding and non-coding genes , 2012, Bioinform..

[48]  J. Rinn,et al.  Peptidomic discovery of short open reading frame-encoded peptides in human cells , 2012, Nature chemical biology.

[49]  James B. Brown,et al.  Long noncoding RNAs are rarely translated in two human cell lines , 2012, Genome research.

[50]  B. Klein,et al.  Bioactivity and prognostic significance of growth differentiation factor GDF15 secreted by bone marrow mesenchymal stem cells in multiple myeloma. , 2012, Cancer research.

[51]  Aditi Jain,et al.  Analysis of human collagen sequences , 2012, Bioinformation.

[52]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[53]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[54]  Thomas M Green,et al.  A public genome-scale lentiviral expression library of human ORFs , 2011, Nature Methods.

[55]  Tim R. Mercer,et al.  Differentiating Protein-Coding and Noncoding RNA: Challenges and Ambiguities , 2008, PLoS Comput. Biol..

[56]  D. Tautz,et al.  A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. , 2007, Trends in genetics : TIG.

[57]  P. Nelson,et al.  Molecular Alterations in Prostate Carcinomas that Associate with In vivo Exposure to Chemotherapy: Identification of a Cytoprotective Mechanism Involving Growth Differentiation Factor 15 , 2007, Clinical Cancer Research.

[58]  Steven P Gygi,et al.  A probability-based approach for high-throughput protein phosphorylation analysis and site localization , 2006, Nature Biotechnology.

[59]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[61]  S. Gygi,et al.  Proteomics: the move to mixtures. , 2001, Journal of mass spectrometry : JMS.

[62]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[63]  John Quackenbush,et al.  Gene Index analysis of the human genome estimates approximately 120,000 genes , 2000, Nature Genetics.

[64]  P. Green,et al.  Analysis of expressed sequence tags indicates 35,000 human genes , 2000, Nature Genetics.

[65]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[66]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[67]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[68]  M. Adams,et al.  How many genes in the human genome? , 1994, Nature Genetics.

[69]  J. Moffat,et al.  Measuring error rates in genomic perturbation screens: gold standards for human functional genomics , 2014, bioRxiv.