A quadrilateral Morley element for biharmonic equations

In this paper, we propose a Morley-type finite element for quadrilateral meshes to solve biharmonic problems. For each quadrilateral Q, the finite element space is defined by the span of P2(Q) plus two functions in P3(Q). Each of the cubic polynomials is the product of a pair of equations of opposite edges and the equation of the bimedian between them. The degrees of freedom consist of the values at vertices and integrals of normal derivatives over edges. Optimal orders of convergence are proved both in discrete H2 and H1 seminorms. Several numerical tests confirm the convergence analysis.

[1]  Jun Hu,et al.  Convergence and optimality of the adaptive Morley element method , 2012, Numerische Mathematik.

[2]  박춘재 A Study on locking phenomena in finite element methods , 2002 .

[3]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[4]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[5]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[6]  F. Bogner,et al.  The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulae , 1965 .

[7]  De Veubeke,et al.  Variational principles and the patch test , 1974 .

[8]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[9]  Wang Ming,et al.  Nonconforming tetrahedral finite elements for fourth order elliptic equations , 2007, Math. Comput..

[10]  Joseph E. Pasciak,et al.  Shift Theorems for the Biharmonic Dirichlet Problem , 2002 .

[11]  Yuan-Ming Wang,et al.  Time-Delayed finite difference reaction-diffusion systems with nonquasimonotone functions , 2006, Numerische Mathematik.

[12]  L. Morley The Triangular Equilibrium Element in the Solution of Plate Bending Problems , 1968 .

[13]  G. Venema The foundations of geometry , 2005 .

[14]  Jun Hu,et al.  A new a posteriori error estimate for the Morley element , 2009, Numerische Mathematik.

[15]  Dongwoo Sheen,et al.  P1-Nonconforming Quadrilateral Finite Element Methods for Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[16]  M. M. Hrabok,et al.  A review and catalogue of plate bending finite elements , 1984 .

[17]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[18]  D. Shi,et al.  Morley type non‐C0 nonconforming rectangular plate finite elements on anisotropic meshes , 2010 .

[19]  Zhong-Ci Shi,et al.  The Best L2 Norm Error Estimate of Lower Order Finite Element Methods for the Fourth Order Problem , 2012 .

[20]  V. Meleshko Selected topics in the history of the two-dimensional biharmonic problem , 2003 .

[21]  Jinchao Xu,et al.  SOME n-RECTANGLE NONCONFORMING ELEMENTS FOR FOURTH ORDER ELLIPTIC EQUATIONS , 2007 .

[22]  Shangyou Zhang,et al.  The Lowest Order Differentiable Finite Element on Rectangular Grids , 2011, SIAM J. Numer. Anal..

[23]  P. Lascaux,et al.  Some nonconforming finite elements for the plate bending problem , 1975 .

[24]  Wang Ming,et al.  The Morley element for fourth order elliptic equations in any dimensions , 2006, Numerische Mathematik.