A Linear Program for the Finite Block Length Converse of Polyanskiy–Poor–Verdú Via Nonsignaling Codes
暂无分享,去创建一个
[1] J. Neumann. Zur Theorie der Gesellschaftsspiele , 1928 .
[2] Debbie W. Leung,et al. Improving zero-error classical communication with entanglement , 2009, Physical review letters.
[3] S. Zionts,et al. Programming with linear fractional functionals , 1968 .
[4] Imre Csiszár,et al. Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .
[5] Sergio Verdú,et al. A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.
[6] Simone Severini,et al. Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovasz theta function , 2010, ArXiv.
[7] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[8] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[9] D. Leung,et al. Entanglement can Increase Asymptotic Rates of Zero-Error Classical Communication over Classical Channels , 2010, Communications in Mathematical Physics.
[10] Debbie W. Leung,et al. Zero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations , 2010, IEEE Transactions on Information Theory.
[11] Salman Beigi,et al. Entanglement-assisted zero-error capacity is upper bounded by the Lovasz theta function , 2010, ArXiv.
[12] H. Vincent Poor,et al. Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.