Helicity multiplexed terahertz multi-foci metalens

Metasurfaces have shown unprecedented capabilities in the manipulation of the light’s wavefront at subwavelength scale, enabling compact functional devices that can outperform conventional bulk components. A device with multiple functionalities is a continuing trend of device miniaturization and system integration. Here, we propose an approach to design a helicity-dependent multi-foci metalens that can independently generate longitudinally (or transversely) multiple focal points under the illumination of left-hand and right-hand circularly polarized terahertz waves. When this metalens is illuminated with linearly polarized terahertz waves, all of the helicity-dependent multiple focal points are observed simultaneously, leading to the multiplexing of helicity-dependent multiple focal spots. A dielectric metasurface consisting of micropillars with different in-plane orientations is utilized to demonstrate these characteristics. This approach for achieving a helicity multiplexed terahertz multi-foci metalens may open an avenue for designing future multifunctional devices.

[1]  Guixin Li,et al.  University of Birmingham Continuous control of the nonlinearity phase for harmonic generations , 2015 .

[2]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[3]  T. Odom,et al.  Lattice-Resonance Metalenses for Fully Reconfigurable Imaging. , 2019, ACS nano.

[4]  Byoungho Lee,et al.  Metasurface eyepiece for augmented reality , 2018, Nature Communications.

[5]  Pai-Yen Chen,et al.  Polarization Encoded Color Image Embedded in a Dielectric Metasurface , 2018, Advanced materials.

[6]  Min-Cheng Pan,et al.  Flexible near-infrared diffuse optical tomography with varied weighting functions of edge-preserving regularization. , 2013, Applied optics.

[7]  Xiaoliang Ma,et al.  Multicolor 3D meta-holography by broadband plasmonic modulation , 2016, Science Advances.

[8]  Andrei Faraon,et al.  MEMS-tunable dielectric metasurface lens , 2017, Nature Communications.

[9]  Q. Gong,et al.  Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms. , 2016, Nano letters.

[10]  Xianzhong Chen,et al.  Multichannel Polarization‐Controllable Superpositions of Orbital Angular Momentum States , 2017, Advanced materials.

[11]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[12]  Xianzhong Chen,et al.  Longitudinal Multifoci Metalens for Circularly Polarized Light , 2015 .

[13]  Ethan Schonbrun,et al.  Reconfigurable imaging systems using elliptical nanowires. , 2011, Nano letters.

[14]  Manuel Le Gallo,et al.  Monatomic phase change memory , 2018, Nature Materials.

[15]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[16]  Xianzhong Chen,et al.  High-resolution grayscale image hidden in a laser beam , 2017, Light: Science & Applications.

[17]  A. Arbabi,et al.  Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays , 2014, Nature Communications.

[18]  Jingya Xie,et al.  Metasurface for multi-channel terahertz beam splitters and polarization rotators , 2018 .

[19]  Yongtian Wang,et al.  Spin and wavelength multiplexed nonlinear metasurface holography , 2016, Nature Communications.

[20]  Arka Majumdar,et al.  Broadband transparent and CMOS-compatible flat optics with silicon nitride metasurfaces [Invited] , 2018, Optical Materials Express.

[21]  Y. Prior,et al.  Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces , 2015, Nature communications.

[22]  Ru-Wen Peng,et al.  Freely Tunable Broadband Polarization Rotator for Terahertz Waves , 2015, Advanced materials.

[23]  Ali Hajimiri,et al.  High sensitivity active flat optics optical phased array receiver with a two-dimensional aperture. , 2018, Optics express.

[24]  Robert R McLeod,et al.  GRIN lens and lens array fabrication with diffusion-driven photopolymer. , 2008, Optics letters.

[25]  D. Tsai,et al.  Broadband achromatic optical metasurface devices , 2017, Nature Communications.

[26]  Xiaodong Yang,et al.  Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces , 2018, Light: Science & Applications.

[27]  Songlin Zhuang,et al.  Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency. , 2019, Optics express.

[28]  Fei Shen,et al.  Polarization-independent longitudinal multi-focusing metalens. , 2015, Optics express.

[29]  Din Ping Tsai,et al.  GaN Metalens for Pixel-Level Full-Color Routing at Visible Light. , 2017, Nano letters.

[30]  Xiaoliang Ma,et al.  Multispectral optical metasurfaces enabled by achromatic phase transition , 2015, Scientific Reports.

[31]  C. H. Chu,et al.  Achromatic metalens array for full-colour light-field imaging , 2019, Nature Nanotechnology.

[32]  Jianqiang Gu,et al.  Highly flexible broadband terahertz metamaterial quarter‐wave plate , 2014 .

[33]  F. Capasso,et al.  Multispectral Chiral Imaging with a Metalens. , 2016, Nano letters.

[34]  Ali Hajimiri,et al.  A Nonuniform Sparse 2-D Large-FOV Optical Phased Array With a Low-Power PWM Drive , 2019, IEEE Journal of Solid-State Circuits.

[35]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[36]  Cheng-Wei Qiu,et al.  Noninterleaved Metasurface for (26-1) Spin- and Wavelength-Encoded Holograms. , 2018, Nano letters.

[37]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[38]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[39]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[40]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[41]  Shuangchun Wen,et al.  Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence , 2015, Light: Science & Applications.

[42]  Chih-Ming Wang,et al.  Aluminum plasmonic multicolor meta-hologram. , 2015, Nano letters.

[43]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[44]  Xiaohang Li,et al.  Multifocal metalens based on multilayer Pancharatnam–Berry phase elements architecture , 2019, Optics Letters.