A novel mechanism of mechanical stress-induced angiotensin II type 1–receptor activation without the involvement of angiotensin II

[1]  J. Elghozi,et al.  Gain-of-function mutant of angiotensin II receptor, type 1A, causes hypertension and cardiovascular fibrosis in mice. , 2007, The Journal of clinical investigation.

[2]  R. Leduc,et al.  Activation of the Angiotensin II Type 1 Receptor Leads to Movement of the Sixth Transmembrane Domain: Analysis by the Substituted Cysteine Accessibility Method , 2007, Molecular Pharmacology.

[3]  S. Nattel,et al.  Targeted ablation of ILK from the murine heart results in dilated cardiomyopathy and spontaneous heart failure. , 2006, Genes & development.

[4]  W. Rottbauer,et al.  Integrin-linked kinase, a novel component of the cardiac mechanical stretch sensor, controls contractility in the zebrafish heart. , 2006, Genes & development.

[5]  I. Komuro,et al.  Molecular Mechanism Underlying Inverse Agonist of Angiotensin II Type 1 Receptor* , 2006, Journal of Biological Chemistry.

[6]  Xavier Deupi,et al.  Coupling ligand structure to specific conformational switches in the β2-adrenoceptor , 2006, Nature chemical biology.

[7]  A. IJzerman,et al.  Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. , 2006, Trends in pharmacological sciences.

[8]  C. Kung,et al.  A possible unifying principle for mechanosensation , 2005, Nature.

[9]  M. Lohse,et al.  Molecular basis of inverse agonism in a G protein–coupled receptor , 2005, Nature chemical biology.

[10]  Sadashiva S Karnik,et al.  Multiple Signaling States of G-Protein-Coupled Receptors , 2005, Pharmacological Reviews.

[11]  S. Kudoh,et al.  Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II , 2004, Nature Cell Biology.

[12]  S. Miura,et al.  Molecular analysis of the structure and function of the angiotensin II type 1 receptor. , 2003, Hypertension research : official journal of the Japanese Society of Hypertension.

[13]  S. Karnik,et al.  Activation of G-protein-coupled receptors: a common molecular mechanism , 2003, Trends in Endocrinology & Metabolism.

[14]  Pierre Lavigne,et al.  Constitutive Activation of the Angiotensin II Type 1 Receptor Alters the Spatial Proximity of Transmembrane 7 to the Ligand-binding Pocket* , 2003, Journal of Biological Chemistry.

[15]  M. Pfeffer,et al.  Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme , 2003, The Lancet.

[16]  S. Miura,et al.  TM2-TM7 Interaction in Coupling Movement of Transmembrane Helices to Activation of the Angiotensin II Type-1 Receptor* , 2003, The Journal of Biological Chemistry.

[17]  Masahiko Hoshijima,et al.  The Cardiac Mechanical Stretch Sensor Machinery Involves a Z Disc Complex that Is Defective in a Subset of Human Dilated Cardiomyopathy , 2002, Cell.

[18]  S. Miura,et al.  Constitutive Activation of Angiotensin II Type 1 Receptor Alters the Orientation of Transmembrane Helix-2* , 2002, The Journal of Biological Chemistry.

[19]  Steven Snapinn,et al.  Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol , 2002, The Lancet.

[20]  R. Chen,et al.  Effect of Angiotensin II Type 1 Receptor Blockade on Cardiac Remodeling in Angiotensin II Type 2 Receptor Null Mice , 2002, Arteriosclerosis, thrombosis, and vascular biology.

[21]  J. Cohn,et al.  A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. , 2001, The New England journal of medicine.

[22]  D. Ganten,et al.  Tissue renin-angiotensin systems: new insights from experimental animal models in hypertension research , 2001, Journal of Molecular Medicine.

[23]  F. Gaffney,et al.  Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. , 2000, The Journal of clinical investigation.

[24]  U. Gether Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. , 2000, Endocrine reviews.

[25]  Y. Zou,et al.  Both Gs and Gi Proteins Are Critically Involved in Isoproterenol-induced Cardiomyocyte Hypertrophy* , 1999, The Journal of Biological Chemistry.

[26]  S. Miura,et al.  Role of Aromaticity of Agonist Switches of Angiotensin II in the Activation of the AT1 Receptor* , 1999, The Journal of Biological Chemistry.

[27]  S. Miura,et al.  Mechanism of constitutive activation of the AT1 receptor: influence of the size of the agonist switch binding residue Asn(111). , 1998, Biochemistry.

[28]  Y. Zou,et al.  Mechanical stretch induces hypertrophic responses in cardiac myocytes of angiotensin II type 1a receptor knockout mice. , 1998, The Journal of biological chemistry.

[29]  H. Matsubara,et al.  Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. , 1998, Circulation.

[30]  H. Matsubara,et al.  Acute pressure overload could induce hypertrophic responses in the heart of angiotensin II type 1a knockout mice. , 1998, Circulation research.

[31]  B. Maigret,et al.  Mutation of Asn111 in the Third Transmembrane Domain of the AT1A Angiotensin II Receptor Induces Its Constitutive Activation* , 1997, The Journal of Biological Chemistry.

[32]  T. Yamazaki,et al.  Specific Interaction of Topoisomerase II and the CD3 Chain of the T Cell Receptor Complex (*) , 1996, The Journal of Biological Chemistry.

[33]  R Aikawa,et al.  Endothelin-1 Is Involved in Mechanical Stress-induced Cardiomyocyte Hypertrophy (*) , 1996, The Journal of Biological Chemistry.

[34]  Y. Zou,et al.  Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. , 1995, Circulation research.

[35]  A. Fukamizu,et al.  Angiotensinogen-deficient mice with hypotension. , 1994, The Journal of biological chemistry.

[36]  J. Sadoshima,et al.  Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro , 1993, Cell.

[37]  P. Timmermans,et al.  Angiotensin II receptors and angiotensin II receptor antagonists. , 1993, Pharmacological reviews.

[38]  D. Ganten,et al.  Tissue renin-angiotensin systems. Their role in cardiovascular disease. , 1993, Circulation.

[39]  S. Chaki,et al.  Identification of amino acid residues of rat angiotensin II receptor for ligand binding by site directed mutagenesis. , 1992, Biochemical and biophysical research communications.

[40]  D E Manyari,et al.  Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. , 1990, The New England journal of medicine.

[41]  A Herz,et al.  Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Brian P Helmke,et al.  Mechanisms of mechanotransduction. , 2006, Developmental cell.

[43]  R. Re Tissue renin angiotensin systems. , 2004, The Medical clinics of North America.

[44]  Luigi Fratta,et al.  Melusin, a muscle-specific integrin β1–interacting protein, is required to prevent cardiac failure in response to chronic pressure overload , 2003, Nature Medicine.

[45]  Y. Yazaki,et al.  Control of cardiac gene expression by mechanical stress. , 1993, Annual review of physiology.

[46]  G. Booz,et al.  Cardiac actions of angiotensin II: Role of an intracardiac renin-angiotensin system. , 1992, Annual review of physiology.