Adaptive sampling for UAV tracking

Unmanned aerial vehicle (UAV)-based target tracking is a long-standing problem in UAV applications. In this paper, we develop a local kernel feature to encode properties of UAV tracking object. Meanwhile, object proposals can provide a reliable prior knowledge to identify tracking target being an object or not. Therefore, we propose to integrate detection proposal method into a tracking by detection framework. More specifically, we adopt edge box proposals and random samplings as training examples and then train these examples for tracking task. The structured support vector machine is employed to implement training and detecting procedure. To reveal the effectiveness of our method, experiment is performed on the UAV123 benchmark dataset. Among state-of-the-art methods, our method achieves comparable results.

[1]  Derek Hoiem,et al.  Category-Independent Object Proposals with Diverse Ranking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[3]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Peyman Milanfar,et al.  Face Verification Using the LARK Representation , 2011, IEEE Transactions on Information Forensics and Security.

[6]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Robert T. Collins,et al.  An Open Source Tracking Testbed and Evaluation Web Site , 2005 .

[8]  Lei Luo,et al.  Enable Scale and Aspect Ratio Adaptability in Visual Tracking with Detection Proposals , 2015, BMVC.

[9]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[11]  Patrick Bouthemy,et al.  Action Localization with Tubelets from Motion , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Michael Felsberg,et al.  Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking , 2016, ECCV.

[13]  Peyman Milanfar,et al.  Kernel Regression for Image Processing and Reconstruction , 2007, IEEE Transactions on Image Processing.

[14]  Bernard Ghanem,et al.  A Benchmark and Simulator for UAV Tracking , 2016, ECCV.

[15]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  C. Lawrence Zitnick,et al.  Edge Boxes: Locating Object Proposals from Edges , 2014, ECCV.

[17]  Ming-Hsuan Yang,et al.  Long-term correlation tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Jonathan Warrell,et al.  Proposal generation for object detection using cascaded ranking SVMs , 2011, CVPR 2011.

[20]  Tommy W. S. Chow,et al.  Tree2Vector: Learning a Vectorial Representation for Tree-Structured Data , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[21]  Jianxiong Xiao,et al.  Tracking Revisited Using RGBD Camera: Unified Benchmark and Baselines , 2013, 2013 IEEE International Conference on Computer Vision.

[22]  Shuicheng Yan,et al.  NUS-PRO: A New Visual Tracking Challenge , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[24]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[25]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.

[26]  Chunyuan Liao,et al.  Adaptive Objectness for Object Tracking , 2015, IEEE Signal Processing Letters.

[27]  C. V. Jawahar,et al.  Blocks That Shout: Distinctive Parts for Scene Classification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Suk Ho Lee,et al.  Noise removal with Gauss curvature-driven diffusion , 2005, IEEE Trans. Image Process..

[29]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Hongdong Li,et al.  Not All Negatives Are Equal: Learning to Track With Multiple Background Clusters , 2018, IEEE Transactions on Circuits and Systems for Video Technology.

[31]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[32]  Robert J. Wood,et al.  Science, technology and the future of small autonomous drones , 2015, Nature.

[33]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[34]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Tommy W. S. Chow,et al.  Object-Level Video Advertising: An Optimization Framework , 2017, IEEE Transactions on Industrial Informatics.

[36]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[37]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Michael Felsberg,et al.  Convolutional Features for Correlation Filter Based Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[39]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[40]  Peyman Milanfar,et al.  Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Shang-Hong Lai,et al.  Fusing generic objectness and visual saliency for salient object detection , 2011, 2011 International Conference on Computer Vision.

[42]  Selim Esedoglu,et al.  Analogue of the Total Variation Denoising Model in the Context of Geometry Processing , 2009, Multiscale Model. Simul..

[43]  Qingming Huang,et al.  Hedged Deep Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[46]  Zhe Chen,et al.  MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Jason Weston,et al.  Solving multiclass support vector machines with LaRank , 2007, ICML '07.

[50]  Hongdong Li,et al.  Beyond Local Search: Tracking Objects Everywhere with Instance-Specific Proposals , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Philip H. S. Torr,et al.  BING: Binarized normed gradients for objectness estimation at 300fps , 2019, Computational Visual Media.

[52]  Arnold W. M. Smeulders,et al.  Locality in Generic Instance Search from One Example , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Suk-Ho Lee,et al.  Noise removal with Gauss curvature-driven diffusion , 2005, IEEE Transactions on Image Processing.

[54]  Yunming Ye,et al.  Multidimensional Latent Semantic Analysis Using Term Spatial Information , 2013, IEEE Transactions on Cybernetics.

[55]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[56]  Thomas Deselaers,et al.  Measuring the Objectness of Image Windows , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[58]  Jianke Zhu,et al.  A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration , 2014, ECCV Workshops.