Biomarkers to Improve Decision-making in Acute Heart Failure

Acute heart failure (AHF) is a complex clinical syndrome that requires prompt diagnosis, risk stratification and effective treatment strategies to reduce morbidity and mortality. Biomarkers are playing an increasingly important role in this process, offering valuable insights into the underlying pathophysiology and facilitating personalised patient management. This review summarises the significance of various biomarkers in the context of AHF, with a focus on their clinical applications to stratify risk and potential for guiding therapy choices.

[1]  A. Cohen-Solal,et al.  Congestion in heart failure: a circulating biomarker‐based perspective. A review from the Biomarkers Working Group of the Heart Failure Association, European Society of Cardiology , 2022, European journal of heart failure.

[2]  A. Bayés‐Genís,et al.  Assessment of filling pressures and fluid overload in heart failure: an updated perspective. , 2022, Revista espanola de cardiologia.

[3]  P. Lourenço,et al.  CA‐125 variation in acute heart failure: a single‐centre analysis , 2022, ESC heart failure.

[4]  Natasha Meunier-McVey,et al.  2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure , 2021, EMJ Cardiology.

[5]  A. Mebazaa,et al.  Circulating heart failure biomarkers beyond natriuretic peptides: review from the Biomarker Study Group of the Heart Failure Association (HFA), European Society of Cardiology (ESC) , 2021, European journal of heart failure.

[6]  A. Bayés‐Genís,et al.  Prognostic value of NT-proBNP and CA125 across glomerular filtration rate categories in acute heart failure. , 2021, European journal of internal medicine.

[7]  W. Mullens,et al.  Cardiac congestion assessed by natriuretic peptides oversimplifies the definition and treatment of heart failure , 2021, ESC heart failure.

[8]  J. Lupón,et al.  Antigen carbohydrate 125 as a biomarker in heart failure: a narrative review , 2021, European journal of heart failure.

[9]  P. Ponikowski,et al.  Spot urine sodium in acute heart failure: differences in prognostic value on admission and discharge , 2021, ESC heart failure.

[10]  J. Struck,et al.  Bioactive adrenomedullin in plasma is associated with biventricular filling pressures in patients with advanced heart failure , 2020, European journal of heart failure.

[11]  A. Bayés‐Genís,et al.  CA125 outperforms NT-proBNP in acute heart failure with severe tricuspid regurgitation. , 2020, International journal of cardiology.

[12]  A. Bayés‐Genís,et al.  Factors associated with plasma antigen carbohydrate 125 and amino-terminal pro-B-type natriuretic peptide concentrations in acute heart failure , 2020, European heart journal. Acute cardiovascular care.

[13]  M. Metra,et al.  Clinical Role of CA125 in Worsening Heart Failure: A BIOSTAT-CHF Study Subanalysis. , 2020, JACC. Heart failure.

[14]  G. Filippatos,et al.  Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations , 2019, European journal of heart failure.

[15]  N. Samani,et al.  Bio‐adrenomedullin as a marker of congestion in patients with new‐onset and worsening heart failure , 2019, European journal of heart failure.

[16]  G. Filippatos,et al.  The use of diuretics in heart failure with congestion — a position statement from the Heart Failure Association of the European Society of Cardiology , 2019, European journal of heart failure.

[17]  A. Mebazaa,et al.  Adrenomedullin in heart failure: pathophysiology and therapeutic application , 2018, European journal of heart failure.

[18]  J. Januzzi,et al.  Established and Emerging Roles of Biomarkers in Heart Failure , 2018, Circulation research.

[19]  A. Voors,et al.  Bio‐adrenomedullin as a potential quick, reliable, and objective marker of congestion in heart failure , 2018, European journal of heart failure.

[20]  Akshay S. Desai,et al.  Spot Urine Sodium as Triage for Effective Diuretic Infusion in an Ambulatory Heart Failure Unit. , 2018, Journal of cardiac failure.

[21]  W. Peacock,et al.  N-Terminal Pro-B-Type Natriuretic Peptide in the Emergency Department: The ICON-RELOADED Study. , 2018, Journal of the American College of Cardiology.

[22]  G. Fonarow,et al.  Long-term serial kinetics of N-terminal pro B-type natriuretic peptide and carbohydrate antigen 125 for mortality risk prediction following acute heart failure , 2017, European heart journal. Acute cardiovascular care.

[23]  J. Lupón,et al.  Original InvestigationEditorial CommentSoluble ST2 for Prognosis and Monitoring in Heart Failure: The New Gold Standard?∗ , 2017 .

[24]  Y. Pinto,et al.  Prognostic Value of Serial ST2 Measurements in Patients With Acute Heart Failure. , 2017, Journal of the American College of Cardiology.

[25]  A. Mebazaa,et al.  Meta-Analysis of Soluble Suppression of Tumorigenicity-2 and Prognosis in Acute Heart Failure. , 2017, JACC. Heart failure.

[26]  M. Emdin,et al.  Prognostic Value of Soluble Suppression of Tumorigenicity-2 in Chronic Heart Failure: A Meta-Analysis. , 2017, JACC. Heart failure.

[27]  S. Morell,et al.  Carbohydrate Antigen-125-Guided Therapy in Acute Heart Failure: CHANCE-HF: A Randomized Study. , 2016, JACC. Heart failure.

[28]  P. Ponikowski,et al.  Serial high sensitivity cardiac troponin T measurement in acute heart failure: insights from the RELAX‐AHF study , 2015, European journal of heart failure.

[29]  Adrian F. Hernandez,et al.  Transitions of care in heart failure: a scientific statement from the American Heart Association. , 2015, Circulation. Heart failure.

[30]  Y. Pinto,et al.  Risk stratification with the use of serial N-terminal pro-B-type natriuretic peptide measurements during admission and early after discharge in heart failure patients: post hoc analysis of the PRIMA study. , 2014, Journal of cardiac failure.

[31]  W. Tang,et al.  Urinary Composition During Decongestive Treatment in Heart Failure With Reduced Ejection Fraction , 2014, Circulation. Heart failure.

[32]  W. Tang,et al.  Insufficient natriuretic response to continuous intravenous furosemide is associated with poor long-term outcomes in acute decompensated heart failure. , 2014, Journal of cardiac failure.

[33]  Y. Pinto,et al.  A novel discharge risk model for patients hospitalised for acute decompensated heart failure incorporating N-terminal pro-B-type natriuretic peptide levels: a European coLlaboration on Acute decompeNsated Heart Failure: ÉLAN-HF Score , 2013, Heart.

[34]  C. Parikh,et al.  Timing of hemoconcentration during treatment of acute decompensated heart failure and subsequent survival: importance of sustained decongestion. , 2013, Journal of the American College of Cardiology.

[35]  V. Hasselblad,et al.  Troponin I in acute decompensated heart failure: insights from the ASCEND‐HF study , 2012, European journal of heart failure.

[36]  G. Fonarow,et al.  Antigen carbohydrate 125 and brain natriuretic peptide serial measurements for risk stratification following an episode of acute heart failure. , 2012, International journal of cardiology.

[37]  J. Alpert,et al.  Recommendations for the use of natriuretic peptides in acute cardiac care: a position statement from the Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care. , 2012, European heart journal.

[38]  Carlo Lombardi,et al.  Impact of Serial Troponin Release on Outcomes in Patients With Acute Heart Failure: Analysis From the PROTECT Pilot Study , 2011, Circulation. Heart failure.

[39]  Eric M. Reyes,et al.  Admission, Discharge, or Change in B-Type Natriuretic Peptide and Long-Term Outcomes: Data From Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients With Heart Failure (OPTIMIZE-HF) Linked to Medicare Claims , 2011, Circulation. Heart failure.

[40]  C. Frampton,et al.  Regional clearance of amino‐terminal pro‐brain natriuretic peptide from human plasma , 2009, European journal of heart failure.

[41]  R. Fitzgerald,et al.  Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. , 2008, Journal of cardiac failure.

[42]  G. Fonarow,et al.  Cardiac troponin and outcome in acute heart failure. , 2008, The New England journal of medicine.

[43]  C. Phillips,et al.  Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure. , 2007, Journal of the American College of Cardiology.

[44]  J. Burnett,et al.  B-type natriuretic peptide as a biomarker beyond heart failure: speculations and opportunities. , 2005, Mayo Clinic proceedings.

[45]  E. Frohlich,et al.  Obesity and suppressed B-type natriuretic peptide levels in heart failure. , 2004, Journal of the American College of Cardiology.

[46]  D. Levy,et al.  Impact of Obesity on Plasma Natriuretic Peptide Levels , 2004, Circulation.

[47]  P. Krishnaswamy,et al.  A rapid test for B-type natriuretic peptide correlates with falling wedge pressures in patients treated for decompensated heart failure: a pilot study. , 2001, Journal of cardiac failure.

[48]  D. DeMets,et al.  Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework , 2001, Clinical pharmacology and therapeutics.

[49]  V. Hombach,et al.  Plasma brain natriuretic peptide and atrial natriuretic peptide concentrations correlate with left ventricular end‐diastolic pressure , 1993, Clinical cardiology.

[50]  OUP accepted manuscript , 2021, European Heart Journal.

[51]  E. Núñez,et al.  [Carbohydrate antigen 125 serial measurements after an admission for acute heart failure and risk of early readmission]. , 2012, Medicina clinica.

[52]  A. Bayés‐Genís,et al.  Soluble ST2 monitoring provides additional risk stratification for outpatients with decompensated heart failure. , 2010, Revista espanola de cardiologia.

[53]  Cardiac Failure Review , 2022 .

[54]  Soluble ST2 for Prognosis and Monitoring in Heart Failure The , 2022 .