Hot-corrosion of refractory high-entropy ceramic matrix composites synthesized by alloy melt-infiltration

[1]  R. Cioffi,et al.  A Simple and Effective Predictor to Design Novel Fluorite-Structured High Entropy Oxides (HEOs) , 2020, Acta Materialia.

[2]  M. Sikora,et al.  High-Entropy Perovskites as Multifunctional Metal Oxide Semiconductors: Synthesis and Characterization of (Gd0.2Nd0.2La0.2Sm0.2Y0.2)CoO3 , 2020, ACS applied electronic materials.

[3]  Jian Luo,et al.  Part II: Experimental verification of computationally predicted preferential oxidation of refractory high entropy ultra-high temperature ceramics , 2020 .

[4]  B. Chakoumakos,et al.  Crystal Growth and Elemental Homogeneity of the Multicomponent Rare-Earth Garnet (Lu1/6Y1/6Ho1/6Dy1/6Tb1/6Gd1/6)3Al5O12 , 2020 .

[5]  S. Curtarolo,et al.  High-entropy ceramics , 2020, Nature Reviews Materials.

[6]  M. Heilmaier,et al.  A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures , 2020 .

[7]  G. Hilmas,et al.  Two‐step synthesis process for high‐entropy diboride powders , 2019, Journal of the American Ceramic Society.

[8]  Y. Kogo,et al.  Carbon fiber reinforced ultra-high temperature ceramic matrix composites: A review , 2019, Ceramics International.

[9]  J. Binner,et al.  Ablation behaviour of ultra-high temperature ceramic matrix composites: Role of MeSi2 addition , 2019, Journal of the European Ceramic Society.

[10]  Y. Kubota,et al.  Oxidation and recession of plain weave carbon fiber reinforced ZrB2-SiC-ZrC in oxygen–hydrogen torch environment , 2019, Journal of the European Ceramic Society.

[11]  T. Wen,et al.  Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 K in air , 2019, Corrosion Science.

[12]  S. Grasso,et al.  High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3−x perovskite synthesis by reactive spark plasma sintering , 2019, Journal of Asian Ceramic Societies.

[13]  Qingsong Wang,et al.  High‐Entropy Oxides: Fundamental Aspects and Electrochemical Properties , 2019, Advanced materials.

[14]  Tyler J. Harrington,et al.  Phase stability and mechanical properties of novel high entropy transition metal carbides , 2019, Acta Materialia.

[15]  T. Wen,et al.  High‐temperature oxidation behavior of (Hf 0.2 Zr 0.2 Ta 0.2 Nb 0.2 Ti 0.2 )C high‐entropy ceramics in air , 2019, Journal of the American Ceramic Society.

[16]  S. Maier,et al.  Plasmon induced thermoelectric effect in graphene , 2018, Nature Communications.

[17]  Bi‐Yu Tang,et al.  Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under pressure: Ab initio investigation , 2018, Physica B: Condensed Matter.

[18]  Jichao Zhao,et al.  Ionic and cellular mechanisms underlying TBX5/PITX2 insufficiency-induced atrial fibrillation: Insights from mathematical models of human atrial cells , 2018, Scientific Reports.

[19]  Cormac Toher,et al.  High-entropy high-hardness metal carbides discovered by entropy descriptors , 2018, Nature Communications.

[20]  Y. Kubota,et al.  Development of short- and continuous carbon fiber-reinforced ZrB2-SiC-ZrC matrix composites for thermal protection systems , 2018, Ceramics International.

[21]  Y. Kubota,et al.  Oxidation of ZrB2 and its composites: a review , 2018, Journal of Materials Science.

[22]  D. Sciti,et al.  On the thermal shock resistance and mechanical properties of novel unidirectional UHTCMCs for extreme environments , 2018, Scientific Reports.

[23]  S. Grasso,et al.  Processing and Properties of High-Entropy Ultra-High Temperature Carbides , 2018, Scientific Reports.

[24]  M. Nastasi,et al.  (Hf 0.2 Zr 0.2 Ta 0.2 Nb 0.2 Ti 0.2 )C high‐entropy ceramics with low thermal conductivity , 2018, Journal of the American Ceramic Society.

[25]  Y. Kubota,et al.  Oxidation behavior of carbon fiber-dispersed ZrB 2 -SiC-ZrC triple phase matrix composites in an oxyhydrogen torch environment , 2018 .

[26]  Y. Kubota,et al.  Initial oxidation behaviors of ZrB2-SiC-ZrC ternary composites above 2000 °C , 2018 .

[27]  C. M. Handley,et al.  Phase stability and distortion in high-entropy oxides , 2017 .

[28]  Y. Kubota,et al.  Oxidation behavior of ZrB 2 -SiC-ZrC in oxygen-hydrogen torch environment , 2017 .

[29]  Y. Kubota,et al.  Oxidation behaviors of ZrB2–SiC binary composites above 2000 °C , 2017 .

[30]  Y. Kubota,et al.  Oxidation behavior of ZrB2-SiC-ZrC at 1700 °C , 2017 .

[31]  C. Kübel,et al.  Multicomponent equiatomic rare earth oxides , 2017 .

[32]  Tyler J. Harrington,et al.  High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics , 2016, Scientific Reports.

[33]  Y. Kogo,et al.  In-situ observation of oxidation behavior in ZrB2–SiC–ZrC ternary composites up to 1500°C using high-temperature observation system , 2016 .

[34]  V. Medri,et al.  Continuous SiC fibers-ZrB2 composites , 2015 .

[35]  Wei Sun,et al.  High temperature corrosion of carbon/carbon composites in Zr–Ti melts during liquid metal infiltration , 2015 .

[36]  T. Ogasawara,et al.  Tyranno ZMI fiber/TiSi2–Si matrix composites for high-temperature structural applications , 2015 .

[37]  Song Wang,et al.  Effect of Cu on the ablation properties of Cf/ZrC composites fabricated by infiltrating Cf/C preforms with Zr-Cu alloys , 2015 .

[38]  T. Yano,et al.  Fabrication and properties of Si−Hf alloy melt-infiltrated Tyranno ZMI fiber/SiC-based matrix composites , 2014 .

[39]  V. Medri,et al.  From random chopped to oriented continuous SiC fibers–ZrB2 composites , 2014 .

[40]  Jien-Wei Yeh,et al.  High-Entropy Alloys , 2014 .

[41]  Wei Sun,et al.  Microstructure and ablation behavior of carbon/carbon composites infiltrated with Zr–Ti , 2013 .

[42]  Lai-fei Cheng,et al.  C/C–SiC–ZrC composites fabricated by reactive melt infiltration with Si0.87Zr0.13 alloy , 2012 .

[43]  Jenn‐Ming Yang,et al.  Microstructural development of a Cf/ZrC composite manufactured by reactive melt infiltration , 2010 .

[44]  S. Guo,et al.  Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .

[45]  Jan Thoemel,et al.  Oxidation of ZrB2-SiC Ultrahigh-Temperature Ceramic Composites in Dissociated Air , 2009 .

[46]  M. Nygren,et al.  Densification and Mechanical Behavior of HfC and HfB2 Fabricated by Spark Plasma Sintering , 2008 .

[47]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[48]  D. Sciti,et al.  Oxidation behavior of a pressureless sintered ZrB_2–MoSi_2 ceramic composite , 2005 .

[49]  A. Sayir Carbon fiber reinforced hafnium carbide composite , 2004 .

[50]  J. Zaykoski,et al.  Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience , 2004 .

[51]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .